对某校高一年级学生参加社区服务次数进行统计,随机抽取M名学生作为样本,得到这M名学生参加社区服务的次
对某校高一年级学生参加社区服务次数进行统计,随机抽取M名学生作为样本,得到这M名学生参加社区服务的次数.根据此数据作出了频数与频率的统计表如下:分组频数频率[10,15)...
对某校高一年级学生参加社区服务次数进行统计,随机抽取M名学生作为样本,得到这M名学生参加社区服务的次数.根据此数据作出了频数与频率的统计表如下:分组频数频率[10,15)50.25[15,20)12n[20,25)mp[25,30)10.05合计M1(1)求出表中m、p的值;(2)若该校高一学生有360人,试估计他们参加社区服务的次数在区间[15,20)内的人数;(3)学校决定对参加社区服务的学生进行表彰,对参加活动次数在[25,30)区间的学生发放价值80元的学习用品,对参加活动次数在[25,30)区间的学生发放价值60元的学习用品,对参加活动次数在[15,20)区间的学生发放价值40元的学习用品,对参加活动次数在[10,15)区间的学生发放价值20元的学习用品,在所取样本中,任意取出2人,并设X为此二人所获得用品价值之差的绝对值,求X的分布列与数学期望E(X).
展开
1个回答
展开全部
(1)由题知
=0.25,
=n,
=p,
=0.05,
又5+12+m+1=M,
解得M=20,n=0.6,m=2,p=0.1,
则[15,20)组的频率与组距之比a为0.12.…(4分)
(2)由(1)知,参加服务次数在区间[15,20)上的人数为360×0.6=216人.…(7分)
(3)所取出两人所获得学习用品价值之差的绝对值可能为0元、20元、40元、60元,
则P(X=0)=
=
=
,
P(X=20)=
=
=
,
P(X=40)=
=
=
,
P(X=60)=
5 |
M |
12 |
M |
m |
M |
1 |
M |
又5+12+m+1=M,
解得M=20,n=0.6,m=2,p=0.1,
则[15,20)组的频率与组距之比a为0.12.…(4分)
(2)由(1)知,参加服务次数在区间[15,20)上的人数为360×0.6=216人.…(7分)
(3)所取出两人所获得学习用品价值之差的绝对值可能为0元、20元、40元、60元,
则P(X=0)=
| ||||||
|
10+66+1 |
190 |
77 |
190 |
P(X=20)=
| ||||||||||||
|
60+24+ |
190 |
86 |
190 |
P(X=40)=
| ||||||||
|
10+12 |
190 |
22 |
190 |
P(X=60)=
|