dy/dx=(1-y)/(y-x)的通解
1个回答
展开全部
解:(1)显然,y=1是原方程的解
(2)当y≠1时,碰雀祥
∵dy/岁姿dx=(1-y)/(y-x)
==>(y-1)dx-xdy=-ydy
==>dx/(y-1)-xdy/(y-1)^2=-ydy/(y-1)^2 (等式笑搏两端同除(y-1)^2)
==>d(x/(y-1))=[-1/(y-1)-1/(y-1)^2]dy
==>x/(y-1)=-ln│y-1│+1/(y-1)+ln│C│ (C是非零常数)
==>(x-1)/(y-1)=ln│C/(y-1)│
==>e^((x-1)/(y-1))=C/(y-1)
==>y-1=Ce^((x-1)/(1-y))
==>y=1+Ce^((x-1)/(1-y))
∴y=1+Ce^((x-1)/(1-y))也是原方程的解
故综合(1)和(2)知,原方程的通解是y=1和y=1+Ce^((x-1)/(1-y))(y≠1)。
(2)当y≠1时,碰雀祥
∵dy/岁姿dx=(1-y)/(y-x)
==>(y-1)dx-xdy=-ydy
==>dx/(y-1)-xdy/(y-1)^2=-ydy/(y-1)^2 (等式笑搏两端同除(y-1)^2)
==>d(x/(y-1))=[-1/(y-1)-1/(y-1)^2]dy
==>x/(y-1)=-ln│y-1│+1/(y-1)+ln│C│ (C是非零常数)
==>(x-1)/(y-1)=ln│C/(y-1)│
==>e^((x-1)/(y-1))=C/(y-1)
==>y-1=Ce^((x-1)/(1-y))
==>y=1+Ce^((x-1)/(1-y))
∴y=1+Ce^((x-1)/(1-y))也是原方程的解
故综合(1)和(2)知,原方程的通解是y=1和y=1+Ce^((x-1)/(1-y))(y≠1)。
追问
我从李永乐全书上看到这个题 他把这个方程化成了一节线性方程
dx/dy=-x/1-y)+y/1-y) 能请你帮我用这个方法算吗 答案是
(1-y)lnΙ1-yΙ+CΙ1-yΙ+1 我 一直算不出那个 1 总是得出 y
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询