如图1,在△ABC中,BE、CF分别是AC、AB两边上的高,D在BE上,且BD=AC,G在CF的延长线上且取CG=AB,连接AD

如图1,在△ABC中,BE、CF分别是AC、AB两边上的高,D在BE上,且BD=AC,G在CF的延长线上且取CG=AB,连接AD,AG.(1)求证:△ABD≌△GCA;(... 如图1,在△ABC中,BE、CF分别是AC、AB两边上的高,D在BE上,且BD=AC,G在CF的延长线上且取CG=AB,连接AD,AG. (1)求证:△ABD≌△GCA;(2)如图2,若条件不变,连接GD,那么△ADG的形状是______.(只填结论即可) 展开
 我来答
寻泉温8850
推荐于2016-07-28 · TA获得超过139个赞
知道答主
回答量:112
采纳率:0%
帮助的人:104万
展开全部
(1)证明:∵BE、CF分别是AC、AB两边上的高,
∴∠BEA=∠CFA=90°,
∴∠ABE+∠BAC=90°,∠ACF+∠BAC=90°,
∴∠ABE=∠ACF,
在△ABD和△GCA中
BD=AC
∠ABE=∠ACF
AB=CG

∴△ABD≌△GCA(SAS);

(2)解:∵△ABD≌△GCA,
∴AD=AG,∠AGC=∠BAD,
而∠AGC+∠GAF=90°,
∴∠GAF+∠BAD=90°,
即∠GAD=90°,
∴△ADG为等腰直角三角形.
故答案为等腰直角三角形.
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式