如图1,在△ABC中,BE、CF分别是AC、AB两边上的高,D在BE上,且BD=AC,G在CF的延长线上且取CG=AB,连接AD
如图1,在△ABC中,BE、CF分别是AC、AB两边上的高,D在BE上,且BD=AC,G在CF的延长线上且取CG=AB,连接AD,AG.(1)求证:△ABD≌△GCA;(...
如图1,在△ABC中,BE、CF分别是AC、AB两边上的高,D在BE上,且BD=AC,G在CF的延长线上且取CG=AB,连接AD,AG. (1)求证:△ABD≌△GCA;(2)如图2,若条件不变,连接GD,那么△ADG的形状是______.(只填结论即可)
展开
1个回答
展开全部
(1)证明:∵BE、CF分别是AC、AB两边上的高,
∴∠BEA=∠CFA=90°,
∴∠ABE+∠BAC=90°,∠ACF+∠BAC=90°,
∴∠ABE=∠ACF,
在△ABD和△GCA中
,
∴△ABD≌△GCA(SAS);
(2)解:∵△ABD≌△GCA,
∴AD=AG,∠AGC=∠BAD,
而∠AGC+∠GAF=90°,
∴∠GAF+∠BAD=90°,
即∠GAD=90°,
∴△ADG为等腰直角三角形.
故答案为等腰直角三角形.
∴∠BEA=∠CFA=90°,
∴∠ABE+∠BAC=90°,∠ACF+∠BAC=90°,
∴∠ABE=∠ACF,
在△ABD和△GCA中
|
∴△ABD≌△GCA(SAS);
(2)解:∵△ABD≌△GCA,
∴AD=AG,∠AGC=∠BAD,
而∠AGC+∠GAF=90°,
∴∠GAF+∠BAD=90°,
即∠GAD=90°,
∴△ADG为等腰直角三角形.
故答案为等腰直角三角形.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询