设{an}是各项都为正数的等比数列,其前n项和为sn,且对任意的n属于正整数都有sn=2an-1.
展开全部
(1)
Sn = 2an-1
n=1, a1=1
an = Sn - S(n-1)
= 2an - 2a(n-1)
an = 2a(n-1)
= 2^(n-1) . a1
=2^(n-1)
(2)
Sn = 2^n -1
nSn = n.2^n -n
Tn = S - n(n+1)/2
S = 1.2^1+2.2^2+.....+n.2^n (1)
2S = 1.2^2+2.2^3+.....+n.2^(n+1) (2)
(2)-(1)
S= n.2^(n+1) - ( 2+2^2+...+2^n)
=n.2^(n+1) -2(2^n -1)
= 2+ (2n-2).2^n
Tn = S - n(n+1)/2
=2+ (2n-2).2^n - n(n+1)/2
Sn = 2an-1
n=1, a1=1
an = Sn - S(n-1)
= 2an - 2a(n-1)
an = 2a(n-1)
= 2^(n-1) . a1
=2^(n-1)
(2)
Sn = 2^n -1
nSn = n.2^n -n
Tn = S - n(n+1)/2
S = 1.2^1+2.2^2+.....+n.2^n (1)
2S = 1.2^2+2.2^3+.....+n.2^(n+1) (2)
(2)-(1)
S= n.2^(n+1) - ( 2+2^2+...+2^n)
=n.2^(n+1) -2(2^n -1)
= 2+ (2n-2).2^n
Tn = S - n(n+1)/2
=2+ (2n-2).2^n - n(n+1)/2
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询