
如图,点E、F分别是?ABCD的边BC、AD上的点,且BE=DF.(1)试判断四边形AECF的形状;(2)若AE=BE,∠BAC
如图,点E、F分别是?ABCD的边BC、AD上的点,且BE=DF.(1)试判断四边形AECF的形状;(2)若AE=BE,∠BAC=90°,求证:四边形AECF是菱形....
如图,点E、F分别是?ABCD的边BC、AD上的点,且BE=DF.(1)试判断四边形AECF的形状;(2)若AE=BE,∠BAC=90°,求证:四边形AECF是菱形.
展开
1个回答
展开全部
(1)解:四边形AECF为平行四边形.
∵四边形ABCD是平行四边形,
∴AD=BC,AD∥BC,
又∵BE=DF,∴AF=CE,
∴四边形AECF为平行四边形;
(2)证明:∵AE=BE,∴∠B=∠BAE,
又∵∠BAC=90°,∴∠B+∠BCA=90°,∠CAE+∠BAE=90°,
∴∠BCA=∠CAE,
∴AE=CE,
又∵四边形AECF为平行四边形,
∴四边形AECF是菱形.
∵四边形ABCD是平行四边形,
∴AD=BC,AD∥BC,
又∵BE=DF,∴AF=CE,
∴四边形AECF为平行四边形;
(2)证明:∵AE=BE,∴∠B=∠BAE,
又∵∠BAC=90°,∴∠B+∠BCA=90°,∠CAE+∠BAE=90°,
∴∠BCA=∠CAE,
∴AE=CE,
又∵四边形AECF为平行四边形,
∴四边形AECF是菱形.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询