求详细的等价无穷小的替换公式
6个回答
展开全部
等价无穷小:(C为常数),就说b是a的n阶的无穷小, b和a^n是同阶无穷小。特殊地,C=1且n=1,即,则称a和b是等价无穷小的关系,记作a~b。
常用无穷小的等价代换
当x→0时,
sinx~x
tanx~x
arcsinx~x
arctanx~x
1-cosx~(1/2)*(x^2)~secx-1
(a^x)-1~x*lna ((a^x-1)/x~lna)
(e^x)-1~x
ln(1+x)~x
(1+Bx)^a-1~aBx
[(1+x)^1/n]-1~(1/n)*x
loga(1+x)~x/lna
(1+x)^a-1~ax(a≠0)
展开全部
等价无穷小替换公式如下 :
以上各式可通过泰勒展开式推导出来。
等价无穷小是无穷小的一种,也是同阶无穷小。从另一方面来说,等价无穷小也可以看成是泰勒公式在零点展开到一阶的泰勒展开公式。
扩展资料:
求极限时,使用等价无穷小的条件:
1. 被代换的量,在取极限的时候极限值为0;
2. 被代换的量,作为被乘或者被除的元素时可以用等价无穷小代换,但是作为加减的元素时就不可以,加减时可以整体代换,不一定能随意单独代换或分别代换。
参考资料:
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
考研范围内,等价无穷小的替换公式如下:
当x趋近于0时:
e^x-1 ~ x;
ln(x+1) ~ x;
sinx ~ x;
arcsinx ~ x;
tanx ~ x;
arctanx ~ x;
1-cosx ~ (x^2)/2;
tanx-sinx ~ (x^3)/2;
(1+bx)^a-1 ~ abx;
值得注意的是等价无穷小的替换一般用在乘除中,一般不用在加减运算的替换。
无穷小就是以数零为极限的变量。然而常量是变量的特殊一类,就像直线属于曲线的一种。因此常量也是可以当做变量来研究的。这么说来——0是可以作为无穷小的常数。从另一方面来说,等价无穷小也可以看成是泰勒公式在零点展开到一阶的泰勒展开公式。
当x趋近于0时:
e^x-1 ~ x;
ln(x+1) ~ x;
sinx ~ x;
arcsinx ~ x;
tanx ~ x;
arctanx ~ x;
1-cosx ~ (x^2)/2;
tanx-sinx ~ (x^3)/2;
(1+bx)^a-1 ~ abx;
值得注意的是等价无穷小的替换一般用在乘除中,一般不用在加减运算的替换。
无穷小就是以数零为极限的变量。然而常量是变量的特殊一类,就像直线属于曲线的一种。因此常量也是可以当做变量来研究的。这么说来——0是可以作为无穷小的常数。从另一方面来说,等价无穷小也可以看成是泰勒公式在零点展开到一阶的泰勒展开公式。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
2017-11-16
展开全部
当x→0时,
sinx~x
tanx~x
arcsinx~x
arctanx~x
1-cosx~(1/2)*(x^2)~secx-1
(a^x)-1~x*lna , (a^x-1)/x~lna
(e^x)-1~x
ln(1+x)~x
(1+Bx)^a-1~aBx
[(1+x)^1/n]-1~(1/n)*x
loga(1+x)~x/lna
(1+x)^a-1~ax(a≠0)
sinx~x
tanx~x
arcsinx~x
arctanx~x
1-cosx~(1/2)*(x^2)~secx-1
(a^x)-1~x*lna , (a^x-1)/x~lna
(e^x)-1~x
ln(1+x)~x
(1+Bx)^a-1~aBx
[(1+x)^1/n]-1~(1/n)*x
loga(1+x)~x/lna
(1+x)^a-1~ax(a≠0)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询