
同角三角函数的基本关系习题
已知2+1\tan^2θ=1+sinθ,求证:(1+sinθ)(2+cosθ)=4要过程滴~...
已知2+1\tan^2θ=1+sinθ,求证:(1+sinθ)(2+cosθ)=4
要过程滴~ 展开
要过程滴~ 展开
2个回答
展开全部
证:
已知:2+1/(tanθ)^2=1+sinθ
对其变形、整理,有:
1+[(cosθ)^2]/(sinθ)^2=sinθ
(sinθ)^2+(cosθ)^2=(sinθ)^3
(sinθ)^3=1
解得:sinθ=1,因此:cosθ=0
将其代入所要证明的式子,有:
(1+sinθ)(2+cosθ)
=(1+1)(2+0)
=4
即:(1+sinθ)(2+cosθ)=4
证毕。
已知:2+1/(tanθ)^2=1+sinθ
对其变形、整理,有:
1+[(cosθ)^2]/(sinθ)^2=sinθ
(sinθ)^2+(cosθ)^2=(sinθ)^3
(sinθ)^3=1
解得:sinθ=1,因此:cosθ=0
将其代入所要证明的式子,有:
(1+sinθ)(2+cosθ)
=(1+1)(2+0)
=4
即:(1+sinθ)(2+cosθ)=4
证毕。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询