1个回答
展开全部
na(n+1)=Sn+n(n+1)/3
Sn = na(n+1) -n(n+1)/3
an = Sn - S(n-1)
=na(n+1) -n(n+1)/3 - (n-1)an + (n-1)n/3
n( a(n+1) -an) =n(n+1)/3 -(n-1)n/3
= (2/3)n
a(n+1) -an = 2/3
=>{an}是等差数列, d=2/3
an -a1 = 2(n-1)/3
an =2(n+2)/3
Sn = na(n+1) -n(n+1)/3
an = Sn - S(n-1)
=na(n+1) -n(n+1)/3 - (n-1)an + (n-1)n/3
n( a(n+1) -an) =n(n+1)/3 -(n-1)n/3
= (2/3)n
a(n+1) -an = 2/3
=>{an}是等差数列, d=2/3
an -a1 = 2(n-1)/3
an =2(n+2)/3
追问
第二问的问题答案请再重复一下
追答
第二问?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询