(2014?吉州区一模)如图,已知抛物线y=x2+bx+c与x轴交于点A(-1,0)、C,与y轴交于点B(0,3),抛物线
(2014?吉州区一模)如图,已知抛物线y=x2+bx+c与x轴交于点A(-1,0)、C,与y轴交于点B(0,3),抛物线的顶点为P.(1)求抛物线的解析式;(2)若抛物...
(2014?吉州区一模)如图,已知抛物线y=x2+bx+c与x轴交于点A(-1,0)、C,与y轴交于点B(0,3),抛物线的顶点为P.(1)求抛物线的解析式;(2)若抛物线向下平移k个单位后经过点(-5,6).①求k的值及平移后抛物线所对应函数的最小值;②设平移后抛物线与y轴交于点D,顶点为Q,点M是平移后的抛物线上的一个动点,请探究:当点M在何处时,△MBD的面积是△MPQ面积的2倍?求出此时点M的坐标.
展开
若以下回答无法解决问题,邀请你更新回答
1个回答
展开全部
(1)∵点A(-1,0)、点B(0,3),在抛物线上,
∴
,
解得:
,
∴所求的抛物线解析式为y=x2+4x+3;
(2)设平移后抛物线的解析式为y=x2+4x+3+k.
∵它经过点(-5,6),
∴6=(-5)2+4(-5)+3+k.
∴k=-2.
∴平移后抛物线的解析式为y=x2+4x+3-2=x2+4x+1.
配方,得y=(x+2)2-3.
∵a=1>0,
∴平移后的抛物线的最小值是-3.
(3)由(2)可知,BD=PQ=2,对称轴为x=-2.
又∵S△MBD=2S△MPQ,
∴BD边上的高是PQ边上的高的2倍.
设M点坐标为(m,n).
①当M点的对称轴的左侧时,则有0-m=2(-2-m).
∴m=-4.
∴n=(-4)2+4(-4)+1=1.
∴M(-4,1).
②当M点在对称轴与y轴之间时,则有0-m=2[m-(-2)].
∴m=-
.
∴n=(-
)2+(-4
)+1=-
.
∴M(-
,-
).
③当M点在y轴的右侧时,则有m=2[(m-(-2)].
∴m=-4<0,不合题意,应舍去.
综合上述,得所求的M点的坐标是(-4,1)或(-
,-
).
∴
|
解得:
|
∴所求的抛物线解析式为y=x2+4x+3;
(2)设平移后抛物线的解析式为y=x2+4x+3+k.
∵它经过点(-5,6),
∴6=(-5)2+4(-5)+3+k.
∴k=-2.
∴平移后抛物线的解析式为y=x2+4x+3-2=x2+4x+1.
配方,得y=(x+2)2-3.
∵a=1>0,
∴平移后的抛物线的最小值是-3.
(3)由(2)可知,BD=PQ=2,对称轴为x=-2.
又∵S△MBD=2S△MPQ,
∴BD边上的高是PQ边上的高的2倍.
设M点坐标为(m,n).
①当M点的对称轴的左侧时,则有0-m=2(-2-m).
∴m=-4.
∴n=(-4)2+4(-4)+1=1.
∴M(-4,1).
②当M点在对称轴与y轴之间时,则有0-m=2[m-(-2)].
∴m=-
4 |
3 |
∴n=(-
4 |
3 |
4 |
3 |
23 |
9 |
∴M(-
4 |
3 |
23 |
9 |
③当M点在y轴的右侧时,则有m=2[(m-(-2)].
∴m=-4<0,不合题意,应舍去.
综合上述,得所求的M点的坐标是(-4,1)或(-
4 |
3 |
23 |
9 |
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询