(2014?吉州区一模)如图,已知抛物线y=x2+bx+c与x轴交于点A(-1,0)、C,与y轴交于点B(0,3),抛物线

(2014?吉州区一模)如图,已知抛物线y=x2+bx+c与x轴交于点A(-1,0)、C,与y轴交于点B(0,3),抛物线的顶点为P.(1)求抛物线的解析式;(2)若抛物... (2014?吉州区一模)如图,已知抛物线y=x2+bx+c与x轴交于点A(-1,0)、C,与y轴交于点B(0,3),抛物线的顶点为P.(1)求抛物线的解析式;(2)若抛物线向下平移k个单位后经过点(-5,6).①求k的值及平移后抛物线所对应函数的最小值;②设平移后抛物线与y轴交于点D,顶点为Q,点M是平移后的抛物线上的一个动点,请探究:当点M在何处时,△MBD的面积是△MPQ面积的2倍?求出此时点M的坐标. 展开
 我来答
若以下回答无法解决问题,邀请你更新回答
1山捎22
推荐于2016-12-01 · TA获得超过137个赞
知道答主
回答量:143
采纳率:50%
帮助的人:60.3万
展开全部
(1)∵点A(-1,0)、点B(0,3),在抛物线上,
0=1?b+c
3=c

解得:
b=4
c=3

∴所求的抛物线解析式为y=x2+4x+3;

(2)设平移后抛物线的解析式为y=x2+4x+3+k.
∵它经过点(-5,6),
∴6=(-5)2+4(-5)+3+k.
∴k=-2.
∴平移后抛物线的解析式为y=x2+4x+3-2=x2+4x+1.
配方,得y=(x+2)2-3.
∵a=1>0,
∴平移后的抛物线的最小值是-3.

(3)由(2)可知,BD=PQ=2,对称轴为x=-2.
又∵S△MBD=2S△MPQ
∴BD边上的高是PQ边上的高的2倍.
设M点坐标为(m,n).
①当M点的对称轴的左侧时,则有0-m=2(-2-m).
∴m=-4.
∴n=(-4)2+4(-4)+1=1.
∴M(-4,1).
②当M点在对称轴与y轴之间时,则有0-m=2[m-(-2)].
∴m=-
4
3

∴n=(-
4
3
2+(-4
4
3
)+1=-
23
9

∴M(-
4
3
,-
23
9
).
③当M点在y轴的右侧时,则有m=2[(m-(-2)].
∴m=-4<0,不合题意,应舍去.
综合上述,得所求的M点的坐标是(-4,1)或(-
4
3
,-
23
9
).
本回答被提问者采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 1条折叠回答
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式