如图,在平面直角坐标系中,O是坐标原点,直线y=?34x+9与x轴,y轴分别交于B,C两点,抛物线y=?14x2+bx+

如图,在平面直角坐标系中,O是坐标原点,直线y=?34x+9与x轴,y轴分别交于B,C两点,抛物线y=?14x2+bx+c经过B,C两点,与x轴的另一个交点为点A,动点P... 如图,在平面直角坐标系中,O是坐标原点,直线y=?34x+9与x轴,y轴分别交于B,C两点,抛物线y=?14x2+bx+c经过B,C两点,与x轴的另一个交点为点A,动点P从点A出发沿AB以每秒3个单位长度的速度向点B运动,运动时间为t(0<t<5)秒.(1)求抛物线的解析式及点A的坐标;(2)以OC为直径的⊙O′与BC交于点M,当t为何值时,PM与⊙O′相切?请说明理由.(3)在点P从点A出发的同时,动点Q从点B出发沿BC以每秒3个单位长度的速度向点C运动,动点N从点C出发沿CA以每秒3105个单位长度的速度向点A运动,运动时间和点P相同.①记△BPQ的面积为S,当t为何值时,S最大,最大值是多少?②是否存在△NCQ为直角三角形的情形?若存在,求出相应的t值;若不存在,请说明理由. 展开
 我来答
丸子哥142
2014-09-23 · TA获得超过111个赞
知道答主
回答量:134
采纳率:83%
帮助的人:60.6万
展开全部
(1)在y=-
3
4
x+9
中,令x=0,得y=9;令y=0,得x=12.
∴C(0,9),B(12,0).
又抛物线经过B,C两点,∴
c=9
?36+12b+c=0
,解得
b=
9
4
c=9

∴y=-
1
4
x2+
9
4
x+9.
于是令y=0,得-
1
4
x2+
9
4
x+9=0,
解得x1=-3,x2=12.∴A(-3,0).

(2)当t=3秒时,PM与⊙O′相切.连接OM.
∵OC是⊙O′的直径,∴∠OMC=90°.∴∠OMB=90°.
∵O′O是⊙O′的半径,O′O⊥OP,∴OP是⊙O′的切线.
而PM是⊙O′的切线,∴PM=PO.∴∠POM=∠PMO.
又∵∠POM+∠OBM=90°,∠PMO+∠PMB=90°,∴∠PMB=∠OBM.∴PM=PB.
∴PO=PB=
1
2
OB=6.∴PA=OA+PO=3+6=9.此时t=3(秒).
∴当t=3秒,PM与⊙O′相切.

(3)①过点Q作QD⊥OB于点D.

∵OC⊥OB,∴QD∥OC.∴△BQD∽△BCO.∴
QD
OC
=
BQ
BC

又∵OC=9,BQ=3t,BC=15,∴
QD
9
=
3t
15
,解得QD=
9
5
t.
∴S△BPQ=
1
2
BP?QD=
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式