定理内容:
若函数f(x)在区间[a,b]满足以下条件:
(1)在[a,b]连续
(2)在(a,b)可导
则在(a,b)中至少存在一点f'(c)=[f(b)-f(a)]/(b-a) a<c<b,使或f(b)-f(a)=f'(c)(b-a) 成立,其中a<c<b
证明: 把定理里面的c换成x再不定积分得原函数f(x)={[f(b)-f(a)]/(b-a)}x.
做辅助函数G(x)=f(x)-{[f(b)-f(a)]/(b-a)}x.
易证明此函数在该区间满足条件:
1.G(a)=G(b);
2.G(x)在[a,b]连续;
3.G(x)在(a,b)可导.
此即罗尔定理条件,由罗尔定理条件即证
扩展资料:
定理表述
如果函数f(x)满足:
(1)在闭区间[a,b]上连续;
(2)在开区间(a,b)内可导;
我们知道函数的微分 是函数的增量Δy的近似表达式,一般情况下只有当|Δx|很小的时候,dy和Δy之间的近似度才会提高;而有限增量公式却给出了当自变量x取得有限增量Δx(|Δx|不一定很小)时,函数增量Δy的准确表达式,这就是该公式的价值所在。
辅助函数法:
可得 又因为 在 上连续,在开区间 内可导,所以根据罗尔定理可得必有一点 使得 由此可得 变形得 定理证毕。
参考资料:百度百科-拉格朗日中值定理
拉格朗日中值定理的内容:
若函数f(x)在区间[a,b]满足以下条件:
(1)在[a,b]连续
(2)在(a,b)可导
则在(a,b)中至少存在一点f'(c)=[f(b)-f(a)]/(b-a) a<c<b,使或f(b)-f(a)=f'(c)(b-a) 成立,其中a<c<b
证明: 把定理里面的c换成x再不定积分得原函数f(x)={[f(b)-f(a)]/(b-a)}x.
做辅助函数G(x)=f(x)-{[f(b)-f(a)]/(b-a)}x.
易证明此函数在该区间满足条件:
1.G(a)=G(b);
2.G(x)在[a,b]连续;
3.G(x)在(a,b)可导.
此即罗尔定理条件,由罗尔定理条件即证。
扩展资料
拉格朗日中值定理又称拉氏定理,是微分学中的基本定理之一,它反映了可导函数在闭区间上的整体的平均变化率与区间内某点的局部变化率的关系。拉格朗日中值定理是罗尔中值定理的推广,同时也是柯西中值定理的特殊情形,是泰勒公式的弱形式(一阶展开)。
法国数学家拉格朗日于1797年在其著作《解析函数论》的第六章提出了该定理,并进行了初步证明,因此人们将该定理命名为拉格朗日中值定理。
参考资料:百度百科-拉格朗日中值定理
定理表述
如果函数f(x)满足:
(1)在闭区间[a,b]上连续;
(2)在开区间(a,b)内可导;
其他形式:
是函数的增量Δy的近似表达式,一般情况下只有当|Δx|很小的时候,dy和Δy之间的近似度才会提高;而有限增量公式却给出了当自变量x取得有限增量Δx(|Δx|不一定很小)时,函数增量Δy的准确表达式,这就是该公式的价值所在。
扩展资料:
意义
拉格朗日中值定理是微分中值定理的核心,其他中值定理是拉格朗日中值定理的特殊情况和推广,它是微分学应用的桥梁,在理论和实际中具有极高的研究价值。
几何意义
两点间的每一点处都有不垂直于x轴的切线,则曲线在A,B间至少存在1点 ,使得该曲线在P点的切线与割线AB平行。
运动学意义
对于曲线运动在任意一个运动过程中至少存在一个位置(或一个时刻)的瞬时速率等于这个过程中的平均速率。
拉格朗日中值定理在柯西的微积分理论系统中占有重要的地位。可利用拉格朗日中值定理对洛必达法则进行严格的证明,并研究泰勒公式的余项。从柯西起,微分中值定理就成为研究函数的重要工具和微分学的重要组成部分。
参考资料:百度百科----拉格朗日中值定理
1)在[a,b]连续
(2)在(a,b)可导
则在(a,b)中至少存在一点f'(c)=[f(b)-f(a)]/(b-a) a<c<b,使或f(b)-f(a)=f'(c)(b-a) 成立,其中a<c<b
证明: 把定理里面的c换成x再不定积分得原函数f(x)={[f(b)-f(a)]/(b-a)}x.
做辅助函数G(x)=f(x)-{[f(b)-f(a)]/(b-a)}x.
易证明此函数在该区间满足条件:
1.G(a)=G(b);
2.G(x)在[a,b]连续;
3.G(x)在(a,b)可导.
此即罗尔定理条件,由罗尔定理条件即证。
向左转|向右转
扩展资料
拉格朗日中值定理又称拉氏定理,是微分学中的基本定理之一,它反映了可导函数在闭区间上的整体的平均变化率与区间内某点的局部变化率的关系。拉格朗日中值定理是罗尔中值定理的推广,同时也是柯西中值定理的特殊情形,是泰勒公式的弱形式(一阶展开)。
法国数学家拉格朗日于1797年在其著作《解析函数论》的第六章提出了该定理,并进行了初步证明,因此人们将该定理命名为拉格朗日中值定理。
参考资料:百度百科-拉格朗日中值定理
参考资料:http://baike.baidu.com/view/103944.htm