(1)操作发现: 如图,矩形ABCD中,E是AD的中点,将△ABE沿BE折叠后得到△GBE,且点在G矩形ABCD内部.

(1)操作发现:如图,矩形ABCD中,E是AD的中点,将△ABE沿BE折叠后得到△GBE,且点在G矩形ABCD内部.小明将BG延长交DC于点F,认为GF=DF,你同意吗?... (1)操作发现: 如图,矩形ABCD中,E是AD的中点,将△ABE沿BE折叠后得到△GBE,且点在G矩形ABCD内部.小明将BG延长交DC于点F,认为GF=DF,你同意吗?说明理由.(2)问题解决:保持(1)中的条件不变,若DC=2DF,求 值.(3)类比探究: 保持(1)中的条件不变,若DC=n.DF,求 的值(直接写出答案) 展开
 我来答
黎约践踏u鞻p汈
推荐于2017-10-10 · TA获得超过150个赞
知道答主
回答量:129
采纳率:100%
帮助的人:57.5万
展开全部
(1)同意;(2) ;(3)


试题分析:(1)求简单的线段相等,可证线段所在的三角形全等,即连接EF,证△EGF≌△EDF即可;
(2)可设DF=x,BC=y;进而可用x表示出DC、AB的长,根据折叠的性质知AB=BG,即可得到BG的表达式,由(1)证得GF=DF,那么GF=x,由此可求出BF的表达式,进而可在Rt△BFC中,根据勾股定理求出x、y的比例关系,即可得到 的值;
(3)方法同(2).
(1)连接EF,

根据翻折不变性得∠EGF=∠D=90°,EG=AE=ED,EF=EF,
∴Rt△EGF≌Rt△EDF,
∴GF=DF;
(2)设DF=x,BC=y,则有GF=x,AD=y
∵DC=2DF,
∴CF=x,DC=AB=BG=2x,
∴BF=BG+GF=3x;
在Rt△BCF中,BC +CF =BF ,即y +x =(3x)
∴y=

(3)由(1)知,GF=DF,设DF=x,BC=y,则有GF=x,AD=y
∵DC=n?DF,
∴BF=BG+GF=(n+1)x
在Rt△BCF中,BC +CF =BF ,即y +[(n-1)x] =[(n+1)x]
∴y=

点评:此类问题综合性强,难度较大,在中考中比较常见,一般作为压轴题,题目比较典型.
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式