某公司开发了一种新型的家电产品,又适逢“家电下乡”的优惠政策.现投资40万元用于该产品的广告促销,已
某公司开发了一种新型的家电产品,又适逢“家电下乡”的优惠政策.现投资40万元用于该产品的广告促销,已知该产品的本地销售量y1(万台)与本地的广告费用x(万元)之间的函数关...
某公司开发了一种新型的家电产品,又适逢“家电下乡”的优惠政策.现投资40万元用于该产品的广告促销,已知该产品的本地销售量y 1 (万台)与本地的广告费用x(万元)之间的函数关系满足 ,该产品的外地销售量y 2 (万台)与外地广告费用t(万元)之间的函数关系可用如图所示的抛物线和线段AB来表示,其中点A为抛物线的顶点. (1)结合图象,写出y 2 (万台)与外地广告费用t(万元)之间的函数关系式;(2)求该产品的销售总量y(万台)与外地广告费用t(万元)之间的函数关系式;(3)如何安排广告费用才能使销售总量最大?
展开
1个回答
展开全部
(1)当0≤t≤25时,y 2 =-0.1(t-25) 2 +122.5;当25≤t≤40时,y 2 =122.5;(2)0≤x≤15时,y=3x+122.5;15≤x≤25时,y=-0.1x 2 +6x+100;25≤x≤40时,y=-0.1x 2 +5x+125;(3)外地广告费用为25万元,本地广告费用15万元. |
试题分析:(1)此函数为分段函数,第一段为抛物线,可设出顶点坐标式,代入(0,60)即可求解;第二段为常函数,直接可以写出. (2)由于总投资为40万元,本地广告费用为t万元,则外地广告费用为(40-x)万元,分段列出函数关系式. (3)由(2)求得的函数关系式求得销售总量最大时广告费用的安排情况. 试题解析:(1)由函数图象可知, 当0≤t≤25时,函数图象为抛物线的一部分, 设解析式为y=a(t-25) 2 +122.5, 把(0,60)代入解析式得, y 2 =-0.1(t-25) 2 +122.5; 当25≤t≤40时,y 2 =122.5; (2)设本地广告费用为x万元,则 0≤x≤15时,y=3x+122.5; 15≤x≤25时,y=-0.1x 2 +6x+100; 25≤x≤40时,y=-0.1x 2 +5x+125. (3)外地广告费用为25万元,本地广告费用15万元. 考点: 二次函数的应用. |
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询