已知a∈R,函数f(x)=(-x2+ax)ex(x∈R,e为自然对数的底数).(Ⅰ)当a=2时,求函数f(x)的单调递

已知a∈R,函数f(x)=(-x2+ax)ex(x∈R,e为自然对数的底数).(Ⅰ)当a=2时,求函数f(x)的单调递增区间;(Ⅱ)若函数f(x)在(-1,1)上单调递增... 已知a∈R,函数f(x)=(-x2+ax)ex(x∈R,e为自然对数的底数).(Ⅰ)当a=2时,求函数f(x)的单调递增区间;(Ⅱ)若函数f(x)在(-1,1)上单调递增,求a的取值范围. 展开
 我来答
月殇倾城榒R
2015-01-03 · TA获得超过105个赞
知道答主
回答量:113
采纳率:50%
帮助的人:121万
展开全部
(Ⅰ)当a=2时,f(x)=(-x2+2x)ex,f′(x)=-(x2-2)ex
令f′(x)>0,得x2-2<0,∴-
2
<x<
2

∴f(x)的单调递增区间是(-
2
2
);
(Ⅱ)f′(x)=[-x2+(a-2)x+a]ex,若f(x)在(-1,1)内单调递增,即当-1<x<1时,f′(x)≥0,
即-x2+(a-2)x+a≥0对x∈(-1,1)恒成立,
即a≥x+1?
1
x+1
对x∈(-1,1)恒成立,
令y=x+1?
1
x+1
,则y′=1+
1
(x+1)2
>0

∴y=x+1?
1
x+1
在做猛正(-1,1)上单调递增,∴y<1+1-
1
1+1
=
3
2

a≥
3
2

当a=
3
2
时,知老当且仅当x=0时,f′(x)=0
∴a的取值范纯悔围是[
3
2
,+∞).
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式