已知函数f(x)=x+sinx(x∈R),且f(y2-6y+11)+f(x2-8x+10)≤0,则当y≥3时,函数F(x,y)=x2+y2的

已知函数f(x)=x+sinx(x∈R),且f(y2-6y+11)+f(x2-8x+10)≤0,则当y≥3时,函数F(x,y)=x2+y2的最小值与最大值分别为()A.1... 已知函数f(x)=x+sinx(x∈R),且f(y2-6y+11)+f(x2-8x+10)≤0,则当y≥3时,函数F(x,y)=x2+y2的最小值与最大值分别为(  )A.13、45B.9、45C.13、49D.9、49 展开
 我来答
隋优达6524
推荐于2016-07-09 · 超过72用户采纳过TA的回答
知道答主
回答量:138
采纳率:66%
帮助的人:75.1万
展开全部
由题意可得:函数f(x)=x+sinx(x∈R)是奇函数,
又因为f′(x)=1+cosx≥0,
所以函数f(x)=x+sinx在R上是增函数.
因为f(y2-6y+11)+f(x2-8x+10)≤0,
所以f(y2-6y+11)≤-f(x2-8x+10)=f(-x2+8x-10),
所以y2-6y+11≤-x2+8x-10,即(x-4)2+(y-3)2≤4,
因为y≥3,所以此不等式表示以(4,3)为圆心,以2为半径的上半圆面.
根据x2+y2的几何意义是点(x,y)到原点的距离的平方可得:x2+y2的最小值与最大值分别为13、49.
故选C.
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式