设a1,d为实数,首项为a1,公差为d的等差数列an的前n项和为Sn,满足S5S6+15=0则d的

设a1,d为实数,首项为a1,公差为d的等差数列an的前n项和为Sn,满足S5S6+15=0则d的取值范围是?... 设a1,d为实数,首项为a1,公差为d的等差数列an的前n项和为Sn,满足S5S6+15=0则d的取值范围是? 展开
 我来答
W梦6
2015-07-07 · TA获得超过1397个赞
知道大有可为答主
回答量:2826
采纳率:68%
帮助的人:1990万
展开全部
设a1,d为实数,首项为a1,公差为d的等差数列{an}的前n项和为Sn,满足S5S6+15=0,则d的取值范围是______.
等差数列的性质;等差数列的前n项和.
由题设知(5a1+10d)(6a1+15d)+15=0,即2a12+9a1d+10d2+1=0,由此导出d2≥8,从而能够得到d的取值范围.
因为S5S6+15=0,
所以(5a1+10d)(6a1+15d)+15=0,整理得2a21+9a1d+10d2+1=0,
此方程可看作关于a1的一元二次方程,它一定有根,故有△=(9d)2−4×2×(10d2+1)=d2−8⩾0,
整理得d2⩾8,解得d⩾22√,或d⩽−22√
则d的取值范围是(−∞,−22√]∪[22√,+∞).
故答案案为:(−∞,−22√]∪[22√,+∞).
更多追问追答
追答
设a1,d为实数,首项为a1,公差为d的等差数列{an}的前n项和为Sn,满足S5S6+15=0,则d的取值范围是______.
等差数列的性质;等差数列的前n项和.
由题设知(5a1+10d)(6a1+15d)+15=0,即2a12+9a1d+10d2+1=0,由此导出d2≥8,从而能够得到d的取值范围.
因为S5S6+15=0,
所以(5a1+10d)(6a1+15d)+15=0,整理得2a21+9a1d+10d2+1=0,
此方程可看作关于a1的一元二次方程,它一定有根,故有△=(9d)2−4×2×(10d2+1)=d2−8⩾0,
整理得d2⩾8,解得d⩾22√,或d⩽−22√
则d的取值范围是(−∞,−22√]∪[22√,+∞).
故答案案为:(−∞,−22√]∪[22√,+∞).
设a1,d为实数,首项为a1,公差为d的等差数列{an}的前n项和为Sn,满足S5S6+15=0,则d的取值范围是______.
等差数列的性质;等差数列的前n项和.
由题设知(5a1+10d)(6a1+15d)+15=0,即2a12+9a1d+10d2+1=0,由此导出d2≥8,从而能够得到d的取值范围.
因为S5S6+15=0,
所以(5a1+10d)(6a1+15d)+15=0,整理得2a21+9a1d+10d2+1=0,
此方程可看作关于a1的一元二次方程,它一定有根,故有△=(9d)2−4×2×(10d2+1)=d2−8⩾0,
整理得d2⩾8,解得d⩾22√,或d⩽−22√
则d的取值范围是(−∞,−22√]∪[22√,+∞).
故答案案为:(−∞,−22√]∪[22√,+∞).
吴凯磊
2015-07-07 · TA获得超过1.3万个赞
知道大有可为答主
回答量:1.1万
采纳率:83%
帮助的人:1951万
展开全部
s5s6+15=0
s5=5/2(a1+a5)=5/2(2a1+4d)=5(a1+2d)
s6=3(a1+a6)=3(2a1+5d)
整理
15(a1+2d)(2a1+5d)=-15
(a1+2d)(2a1+5d)=-1
a1未知 d范围无法判断
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
我不是他舅
2015-07-07 · TA获得超过138万个赞
知道顶级答主
回答量:29.6万
采纳率:79%
帮助的人:34.8亿
展开全部

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(1)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式