高等数学间断点问题
试例举出具有以下性质的函数f(x)的例子:x=0,+(-)1,+(-)2,+(-)1/2,......,+(-)n,+(-)1/n,......是f(x)的所有间断点,且...
试例举出具有以下性质的函数f(x)的例子: x=0,+(-)1,+(-)2,+(-)1/2,......,+(-)n,+(-)1/n,......是f(x)的所有间断点,且它们都是无穷间断点。
展开
4个回答
展开全部
这样的函数很多,比如我随便举一个,f(x)=1/sin(n*pi/x),在你所说的那些点x=0,+(-)1,+(-)2,+(-)1/2,......,+(-)n,+(-)1/n,......都是间断点,而且是无穷间断点。pi=3.1415926...,n为任意一自然数。希望对你有帮助。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
答:
定义f(x)= tan[(2x+1)π/2](当x为整数), tan[(1+2/x)π/2](当x不为整数)
则x符合以上情况时为f(x)第二类间断点,且都为无穷间断点。
如果不要分段函数的话,这个函数可以:
f(x)=1/sin(πx) + 1/sin(π/x)
定义f(x)= tan[(2x+1)π/2](当x为整数), tan[(1+2/x)π/2](当x不为整数)
则x符合以上情况时为f(x)第二类间断点,且都为无穷间断点。
如果不要分段函数的话,这个函数可以:
f(x)=1/sin(πx) + 1/sin(π/x)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
弄个分段函数不就行了。
f(x)=g(x) x不等于0,+(-)1,+(-)2,+(-)1/2,......,+(-)n,+(-)1/n,......
f(x)=0 x=0,+(-)1,+(-)2,+(-)1/2,......,+(-)n,+(-)1/n,......
f(x)=g(x) x不等于0,+(-)1,+(-)2,+(-)1/2,......,+(-)n,+(-)1/n,......
f(x)=0 x=0,+(-)1,+(-)2,+(-)1/2,......,+(-)n,+(-)1/n,......
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询