求解∫csc³xdx的不定积分
∫csc³xdx=[ln|cscx-cotx|-cscxcotx]/2+C。C为积分常数。
解答过程如下:
∫csc^3xdx
=-∫cscxd(cotx)
=-cscxcotx+∫cotxd(cscx)
=-cscxcotx-∫cscxcot^2xdx
=-cscxcotx-∫cscx(csc^2x-1)dx
=-cscxcotx-∫csc^3xdx+∫cscxdx
=-cscxcotx-∫csc^3xdx+ln|cscx-cotx|
由此可得:
∫csc^3xdx=[ln|cscx-cotx|-cscxcotx]/2+C
扩展资料:
分部积分:
(uv)'=u'v+uv'
得:u'v=(uv)'-uv'
两边积分得:∫ u'v dx=∫ (uv)' dx - ∫ uv' dx
即:∫ u'v dx = uv - ∫ uv' d,这就是分部积分公式
也可简写为:∫ v du = uv - ∫ u dv
常用积分公式:
1)∫0dx=c
2)∫x^udx=(x^(u+1))/(u+1)+c
3)∫1/xdx=ln|x|+c
4)∫a^xdx=(a^x)/lna+c
5)∫e^xdx=e^x+c
6)∫sinxdx=-cosx+c
7)∫cosxdx=sinx+c
8)∫1/(cosx)^2dx=tanx+c
9)∫1/(sinx)^2dx=-cotx+c
10)∫1/√(1-x^2) dx=arcsinx+c
∫csc^3xdx
=-∫cscxd(cotx)
=-cscxcotx+∫cotxd(cscx)
=-cscxcotx-∫cscxcot^2xdx
=-cscxcotx-∫cscx(csc^2x-1)dx
=-cscxcotx-∫csc^3xdx+∫cscxdx
=-cscxcotx-∫csc^3xdx+ln|cscx-cotx|
所以∫csc^3xdx=[ln|cscx-cotx|-cscxcotx]/2+C,其中C是任意常数