高等数学。 请问图中题怎么做??…。

 我来答
匿名用户

2015-12-06
展开全部
【知识点】
若矩阵A的特征值为λ1,λ2,...,λn,那么|A|=λ1·λ2·...·λn

【解答】
|A|=1×2×...×n= n!
设A的特征值为λ,对于的特征向量为α。
则 Aα = λα
那么 (A²-A)α = A²α - Aα = λ²α - λα = (λ²-λ)α
所以A²-A的特征值为 λ²-λ,对应的特征向量为α

A²-A的特征值为 0 ,2,6,...,n²-n

【评注】
对于A的多项式,其特征值为对应的特征多项式。
线性代数包括行列式、矩阵、线性方程组、向量空间与线性变换、特征值和特征向量、矩阵的对角化,二次型及应用问题等内容。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
358463121
2015-12-06 · TA获得超过505个赞
知道小有建树答主
回答量:423
采纳率:0%
帮助的人:383万
展开全部
令x=sint就有
=∫cosxdx/(sinx+cosx)
=1/2∫[(cosx+sinx)+(cosx-sinx)]dx/(cosx+sinx)
=1/2(∫1*dx+∫(cosx-sinx)dx/(sinx+cosx)] )
=1/2(x+∫d(sinx+cosx)/(sinx+cosx) )
=1/2(x+ln(sinx+cosx))+C'
本回答被提问者和网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式