如图,△ABC中,D是BC边的中点,过D的直线交AB于E,交AC的延长线于F,且BE-CF。求证AE=AF 20

图自己画,是初2的一道几何题... 图自己画,是初2的一道几何题 展开
在星留1f
2010-11-19
知道答主
回答量:20
采纳率:0%
帮助的人:9.1万
展开全部
解:由题意得∵DG//CF
∴∠CFD=∠GDF(内错角) ∠BCF=∠BDG (同位角)①
∵DC=BD DG=CF ∠BCF=∠BDG
∴△DCF≌△BDG
∴∠CDF=∠CBG
∴DF//BG ∴EF//BG ∵DG=CF CF=EB∴EB=DG
∴四边形EDGB是等腰梯形
∴∠DGB=∠EBG
∵∠AEF=∠EBG ∴∠DGB=∠AEF
∵EF//BG
∴∠FDG=∠DGB (内错角)
∵∠FDG=∠CFD
∴∠AEF=∠CFD 即∠AEF=∠AFE
∴△AEF为等腰三角形
∴AE=AF
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
superwudiooo
2010-11-19 · TA获得超过141个赞
知道答主
回答量:96
采纳率:0%
帮助的人:44.4万
展开全部
过D点作平行线段DG//CF 且DG=CF
连接BG
∵DG//CF
∴∠CFD=∠GDF(内错角) ∠BCF=∠BDG (同位角)①
∵DC=BD DG=CF ∠BCF=∠BDG
∴△DCF≌△BDG
∴∠CDF=∠CBG
∴DF//BG ∴EF//BG ∵DG=CF CF=EB∴EB=DG
∴四边形EDGB是等腰梯形
∴∠DGB=∠EBG
∵∠AEF=∠EBG ∴∠DGB=∠AEF
∵EF//BG
∴∠FDG=∠DGB (内错角)
∵∠FDG=∠CFD
∴∠AEF=∠CFD 即∠AEF=∠AFE
∴△AEF为等腰三角形
∴AE=AF

图?你懂的
本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式