5个回答
展开全部
椭圆的离心率(偏心率)(eccentricity)。离心率统一定义是动点到焦点的距离和动点到准线的距离之比。
计算方法:
离心率统一定义是动点到左(右)焦点的距离和动点到左(右)准线的距离之比。
椭圆扁平程度的一种量度,离心率定义为椭圆两焦点间的距离和长轴长度的比值,用e表示,即e=c/a (c,半焦距;a,长半轴)
椭圆的离心率可以形象地理解为,在椭圆的长轴不变的前提下,两个焦点离开中心的程度。
离心率=(ra-rp)/(ra+rp),ra指远点距离,rp指近点距离。
扩展资料:
曲线形状且离心率和曲线形状对照关系综合如下:
e=0, 圆
0<e<1, 椭圆
e=1, 抛物线
e>1, 双曲线
参考资料来源:百度百科-椭圆离心率
展开全部
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
离心率根据不同的条件有五种求法:
一、已知圆锥曲线的标准方程或a、c易求时,可利用率心率公式e=c/a来解决。
二、构造a、c的齐次式,解出e
根据题设条件,借助a、b、c之间的关系,构造a、c的关系(特别是齐二次式),进而得到关于a、c的一元方程,从而解得离心率e。
三、采用离心率的定义以及椭圆的定义求解
四、根据圆锥曲线的统一定义求解
五、构建关于e的不等式,求e的取值范围
参考资料栏不够写,地址的全称是 http://wenku.baidu.com/view/32b55a758e9951e79b8927cc.html?from=rec&pos=0&weight=16&lastweight=14&count=5
里面就有这五种情况的详细例题
一、已知圆锥曲线的标准方程或a、c易求时,可利用率心率公式e=c/a来解决。
二、构造a、c的齐次式,解出e
根据题设条件,借助a、b、c之间的关系,构造a、c的关系(特别是齐二次式),进而得到关于a、c的一元方程,从而解得离心率e。
三、采用离心率的定义以及椭圆的定义求解
四、根据圆锥曲线的统一定义求解
五、构建关于e的不等式,求e的取值范围
参考资料栏不够写,地址的全称是 http://wenku.baidu.com/view/32b55a758e9951e79b8927cc.html?from=rec&pos=0&weight=16&lastweight=14&count=5
里面就有这五种情况的详细例题
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询