高中数学数列。题目如图。
展开全部
解:(1) (3-m)Sn+2man=m+3.........(1)
(3-m)Sn+1+2man+1=m+3 ......(2)
(2)-(1)===>(3-m)[Sn+1-Sn]+2man+1-2man=0===>(3-m)an+1+2man+1-2man=0===>
(m+3)an+1=2man , m<>-3 , m<>0===>an+1/an=2m/(m+3)<>0
令 n=1 ,S1=a1代入(1)式===>(3-m)a1+2ma1=m+3===>(m+3)a1=m+3===>a1=1
即 {an}是以1为首项,公比为 2m/(m+3)的等比数列。
(2)q=f(m)=2m/(m+3)
bn+1=3/2f(bn)===>bn+1=3bn/(bn+3) 倒数变换===》1/bn+1=1/bn+1/3===>{1/bn }是以1为首项,公差为1/3的等差数列,===>1/bn=1+(n-1)/3=(n+2)/3===>bn=3/(n+2)
bnbn+1=3/(n+2)*3/(n+3)=9[1/(n+2)-1/(n+3)] 裂项求和===>b1b2+b2b3+b3b4+.....+bnbn+1
=9(1/3-1/(n+3)]=3-9/(n+3)<3.
(3-m)Sn+1+2man+1=m+3 ......(2)
(2)-(1)===>(3-m)[Sn+1-Sn]+2man+1-2man=0===>(3-m)an+1+2man+1-2man=0===>
(m+3)an+1=2man , m<>-3 , m<>0===>an+1/an=2m/(m+3)<>0
令 n=1 ,S1=a1代入(1)式===>(3-m)a1+2ma1=m+3===>(m+3)a1=m+3===>a1=1
即 {an}是以1为首项,公比为 2m/(m+3)的等比数列。
(2)q=f(m)=2m/(m+3)
bn+1=3/2f(bn)===>bn+1=3bn/(bn+3) 倒数变换===》1/bn+1=1/bn+1/3===>{1/bn }是以1为首项,公差为1/3的等差数列,===>1/bn=1+(n-1)/3=(n+2)/3===>bn=3/(n+2)
bnbn+1=3/(n+2)*3/(n+3)=9[1/(n+2)-1/(n+3)] 裂项求和===>b1b2+b2b3+b3b4+.....+bnbn+1
=9(1/3-1/(n+3)]=3-9/(n+3)<3.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询