求解有关三角函数的问题
1、化简sin【(4n-1)4*π-a】+cos【(4n+1)*π-a】n∈z2、sin210=?3、若tanx=2,则(sinx+cosx)÷(sinx-cosx)+c...
1、化简 sin【(4n-1)4*π-a】+cos【(4n+1)*π-a】 n∈z
2、sin210=?
3、若tanx=2,则(sinx+cosx)÷(sinx-cosx)+cos²x
4、已知(1+tanx)÷(1-tanx)=2010.,求证1÷cos2x+tan2x=2010
要详细过程,thx!!! 展开
2、sin210=?
3、若tanx=2,则(sinx+cosx)÷(sinx-cosx)+cos²x
4、已知(1+tanx)÷(1-tanx)=2010.,求证1÷cos2x+tan2x=2010
要详细过程,thx!!! 展开
展开全部
楼上答错了2题。我的解答比他好多了。
给你一点简单方法,尤其是第4题:
1、sin[(4n-1)4*π-a]+cos[(4n+1)*π-a]
=sin(-a)+cos(-a)=-sina+cosa
2、sin210=sin(180+30)=-sin30=-1/2
3、(sinx+cosx)/(sinx-cosx)+cos²x
=(tanx+1)/(tanx-1)+cos²x/(cos²x+sin²x)
=3/1 +1/(1+tan²x)
=3+1/(1+4)=16/5
4、1÷cos2x+tan2x=(1+sin2x)/cos2x
=(sin²x+cos²x+2sinxcosx)/(cos²x-sin²x)
=(sinx+cosx)²/(cosx-sinx)(cosx+sinx)
=(sinx+cosx)/(cosx-sinx)
条件(1+tanx)/(1-tanx)=2010,即(sinx+cosx)/(cosx-sinx)=2010
所以原式=2010.
给你一点简单方法,尤其是第4题:
1、sin[(4n-1)4*π-a]+cos[(4n+1)*π-a]
=sin(-a)+cos(-a)=-sina+cosa
2、sin210=sin(180+30)=-sin30=-1/2
3、(sinx+cosx)/(sinx-cosx)+cos²x
=(tanx+1)/(tanx-1)+cos²x/(cos²x+sin²x)
=3/1 +1/(1+tan²x)
=3+1/(1+4)=16/5
4、1÷cos2x+tan2x=(1+sin2x)/cos2x
=(sin²x+cos²x+2sinxcosx)/(cos²x-sin²x)
=(sinx+cosx)²/(cosx-sinx)(cosx+sinx)
=(sinx+cosx)/(cosx-sinx)
条件(1+tanx)/(1-tanx)=2010,即(sinx+cosx)/(cosx-sinx)=2010
所以原式=2010.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
武义菲亚伏电子有限公司
2023-06-12 广告
2023-06-12 广告
绝缘子是用来支持和固定母线与带电导体、并使带电导体间或导体与大地之间有足够的距离和绝缘。绝缘子应具有足够的电气绝缘强度和耐潮湿性能。通常在电气厂商上又大量批售.武义菲亚伏电子有限公司位于武义县东南工业园区,成立于2006年,专门致力于绝缘子...
点击进入详情页
本回答由武义菲亚伏电子有限公司提供
展开全部
1、化简 sin【(4n-1)4*π-a】+cos【(4n+1)*π-a】 n∈z
解析:sin((4n-1)*4π-a)+cos((4n+1)*π-a)=sin(-a)-cos(-a)
=-(sina+cosa)
2、sin210=?
解析:sin210°=sin(180°+30°)
=-sin30°=-1/2
3、若tanx=2,则(sinx+cosx)÷(sinx-cosx)+cos2x
解析:∵tanx=2
∴sinx=2/√5,cosx=1/√5,(cosx)^2=1/5,(sinx)^2=4/5
原式=(sinx+cosx)^2/[(sinx)^2-(cosx)^2]-(cosx)^2
=(3/√5)^2/(3/5)-1/5=3-1/5=14/5
4、已知(1+tanx)÷(1-tanx)=2010.,求证1÷cos2x+tan2x=2010
解析:(1+tanx)/(1-tanx)=(1+tanx)^2/[1-(tanx)^2]
=[1+(tanx)^2+2tanx]/[1-(tanx)^2] =[1+(tanx)^2]/[1-(tanx)^2]+[2tanx]/[1-(tanx)^2]
=[1+(tanx)^2]/[1-(tanx)^2]+tan2x
=1/{[1-(tanx)^2]/ [1+(tanx)^2]}+tan2x
又[1-(tanx)^2]/ [1+(tanx)^2]=1-2(tanx)^2/ [1+(tanx)^2]
=1-2/[1+(cotx)^2] =1-2/(cscx)^2=1-2(sinx)^2=cos2x
∴(1+tanx)/(1-tanx)= 1/cos2x+tan2x
∵(1+tanx)/(1-tanx)=2010
∴1/cos2x+tan2x=2010
解析:sin((4n-1)*4π-a)+cos((4n+1)*π-a)=sin(-a)-cos(-a)
=-(sina+cosa)
2、sin210=?
解析:sin210°=sin(180°+30°)
=-sin30°=-1/2
3、若tanx=2,则(sinx+cosx)÷(sinx-cosx)+cos2x
解析:∵tanx=2
∴sinx=2/√5,cosx=1/√5,(cosx)^2=1/5,(sinx)^2=4/5
原式=(sinx+cosx)^2/[(sinx)^2-(cosx)^2]-(cosx)^2
=(3/√5)^2/(3/5)-1/5=3-1/5=14/5
4、已知(1+tanx)÷(1-tanx)=2010.,求证1÷cos2x+tan2x=2010
解析:(1+tanx)/(1-tanx)=(1+tanx)^2/[1-(tanx)^2]
=[1+(tanx)^2+2tanx]/[1-(tanx)^2] =[1+(tanx)^2]/[1-(tanx)^2]+[2tanx]/[1-(tanx)^2]
=[1+(tanx)^2]/[1-(tanx)^2]+tan2x
=1/{[1-(tanx)^2]/ [1+(tanx)^2]}+tan2x
又[1-(tanx)^2]/ [1+(tanx)^2]=1-2(tanx)^2/ [1+(tanx)^2]
=1-2/[1+(cotx)^2] =1-2/(cscx)^2=1-2(sinx)^2=cos2x
∴(1+tanx)/(1-tanx)= 1/cos2x+tan2x
∵(1+tanx)/(1-tanx)=2010
∴1/cos2x+tan2x=2010
本回答被提问者和网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
1. 原式=sin(-a)+cosa
=cosa-sina
2. sin210=sin(210/180)π
=sin7π/6
=sin(π+π/6)
=-sinπ/6
=-1/2
3. 由tanx=2,则cos²x=1/5,sin²x=4/5
原式=(sinx+cosx)²/(sin²x-cos²x)-cos²x
=(sin²x+cos²x+2sinxcosx)/(sin²x-cos²x)-1/5
=(tan²x+1+2tanx)/(tan²x-1)-1/5
=(4+1+2*2)/(4-1)-1/5
=3-1/5
=14/5
=cosa-sina
2. sin210=sin(210/180)π
=sin7π/6
=sin(π+π/6)
=-sinπ/6
=-1/2
3. 由tanx=2,则cos²x=1/5,sin²x=4/5
原式=(sinx+cosx)²/(sin²x-cos²x)-cos²x
=(sin²x+cos²x+2sinxcosx)/(sin²x-cos²x)-1/5
=(tan²x+1+2tanx)/(tan²x-1)-1/5
=(4+1+2*2)/(4-1)-1/5
=3-1/5
=14/5
参考资料: /
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询