用泰勒公式求极限时是不是只能是自变量趋于一个数的时候?
3个回答
展开全部
用泰勒公式求极限时不是只能是自变量趋于一个数,而是趋于0的时候。使用泰勒公式求极限的时候x必须趋近于零,否则它的无穷小项在计算的过程中不能消掉。
泰勒公式,应用于数学、物理领域,是一个用函数在某点的信息描述其附近取值的公式。如果函数足够平滑的话,在已知函数在某一点的各阶导数值的情况之下,泰勒公式可以用这些导数值做系数构建一个多项式来近似函数在这一点的邻域中的值。
泰勒公式得名于英国数学家布鲁克·泰勒。他在1712年的一封信里首次叙述了这个公式,尽管1671年詹姆斯·格雷高里已经发现了它的特例。拉格朗日在1797年之前,最先提出了带有余项的现在形式的泰勒定理。
扩展资料:
一、常用函数的泰勒公式:
二、泰勒公式的应用:
1、幂级数的求导和积分可以逐项进行,因此求和函数相对比较容易。
2、一个解析函数可被延伸为一个定义在复平面上的一个开片上的解析函数,并使得复分析这种手法可行。
3、泰勒级数可以用来近似计算函数的值,并估计误差。
4、证明不等式。
5、求待定式的极限。
参考资料来源:百度百科-泰勒公式
展开全部
x=-1处展成泰勒公式是指展开以后的收敛中心是x=-1,与x的取值范围无关。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
你好,使用泰勒公式求极限的时候x必须趋近于零或无穷,否则它的无穷小项在计算的过程中不能消掉。而且不是0或者无穷的话也不好计算,就没有泰勒展开的意义了。
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询