设总体为X,抽取n个i.i.d.的样本X1,X2,...,Xn,其样本均值为Y = (X1+X2+...+Xn)/n
其样本方差为S =( (Y-X1)^2 + (Y-X2)^2 + ... + (Y-Xn)^2 ) / (n-1)
为了记号方便,我们只看S的分子部分,设为A
则 E A =E( n * Y^2 - 2 * Y * (X1+X2+...+Xn) + (X1^2 + X2^2 +...+ Xn^2))
=E( (X1^2 + X2^2 +...+ Xn^2) - n * Y^2 )
注意 EX1 = EX2 = ... = EXn = EY = EX;
VarX1 = VarX2 = ... = VarXn = VarX = E(X^2) - (EX)^2
VarY = VarX / n (这条不是明显的,但是可以展开后很容易地证出来,而且也算是一个常识性的结论)
所以E A = n(VarX + (EX)^2) - n * (VarY + (EY)^2)
= n(VarX + (EX)^2) - n * (VarX/n + (EX)^2)
= (n-1) VarX
所以 E S = VarX;得证。
扩展资料:
在概率分布中,设X是一个离散型随机变量,若E{[X-E(X)]^2}存在,则称E{[X-E(X)]^2}为X的方差,记为D(X),Var(X)或DX,其中E(X)是X的期望值,X是变量值,公式中的E是期望值expected value的缩写,意为“变量值与其期望值之差的平方和”的期望值。
平方根是一个凹函数,因此引入负偏差(由Jensen不等式),这取决于分布,因此校正样本标准偏差(使用贝塞尔校正)有偏差。 标准偏差的无偏估计是一个技术上涉及的问题,尽管对于使用术语n-1.5的正态分布,形成无偏估计。
研究随机变量与其均值的偏离程度是十分必要的。那么,用怎样的量去度量这个偏离程度呢?容易看到E[|X-E[X]|]能度量随机变量与其均值E(X)的偏离程度。但由于上式带有绝对值,运算不方便,通常用量E[(X-E[X])2] 这一数字特征就是方差。
参考资料来源:百度百科--方差
2021-01-25 广告
有一个新的问题:
(1/n)* (X1^2 + X2^2 +...+ Xn^2)-Y^2
为什么=(1/n)*(西格码i=1到n)[(Xi-Y)^2]=S
虽然它为你化简的逆问题,但是很难看出来了。你能更简单的证明一下上式吗?
设总体为X,抽取n个i.i.d.的样本X1,X2,...,Xn,其样本均值为
Y = (X1+X2+...+Xn)/n
其样本方差为
S =( (Y-X1)^2 + (Y-X2)^2 + ... + (Y-Xn)^2 ) / (n-1)
为了记号方便,我们只看S的分子部分,设为A
则 E A =E( n * Y^2 - 2 * Y * (X1+X2+...+Xn) + (X1^2 + X2^2 +...+ Xn^2))
=E( (X1^2 + X2^2 +...+ Xn^2) - n * Y^2 )
注意 EX1 = EX2 = ... = EXn = EY = EX;
VarX1 = VarX2 = ... = VarXn = VarX = E(X^2) - (EX)^2
VarY = VarX / n (这条不是明显的,但是可以展开后很容易地证出来,而且也算是一个常识性的结论)
所以E A = n(VarX + (EX)^2) - n * (VarY + (EY)^2)
= n(VarX + (EX)^2) - n * (VarX/n + (EX)^2)
= (n-1) VarX
所以 E S = VarX;得证。 其中的Y和S均为你回答中的那个表达式。
总体方差为σ²,均值为μ
S=[(X1-X)^2+(X2-X)^2....+(Xn-X)^2]/(n-1)
X表示样本均值=(X1+X2+...+Xn)/n
设A=(X1-X)^2+(X2-X)^2....+(Xn-X)^2
E(A)=E[(X1-X)^2+(X2-X)^2....+(Xn-X)^2]
=E[(X1)^2-2X*X1+X^2+(X2)^2-2X*X2+X^2+(X2-X)^2....+(Xn)^2-2X*Xn+X^2]
=E[(X1)^2+(X2)^2...+(Xn)^2+nX^2-2X*(X1+X2+...+Xn)]
=E[(X1)^2+(X2)^2...+(Xn)^2+nX^2-2X*(nX)]
=E[(X1)^2+(X2)^2...+(Xn)^2-nX^2]
而E(Xi)^2=D(Xi)+[E(Xi)]^2=σ²+μ²
E(X)^2=D(X)+[E(X)]^2=σ²/n+μ²
所以E(A)=E[(X1-X)^2+(X2-X)^2....+(Xn-X)^2]
=n(σ²+μ²)-n(σ²/n+μ²)
=(n-1)σ²
所以为了保证样本方差的无偏性
S=[(X1-X)^2+(X2-X)^2....+(Xn-X)^2]/(n-1)
E(S)=(n-1)σ²/(n-1)=σ²
Y = (X1+X2+...+Xn)/n
其样本方差为
S =( (Y-X1)^2 + (Y-X2)^2 + ... + (Y-Xn)^2 ) / (n-1)
为了记号方便,我们只看S的分子部分,设为A
则 E A =E( n * Y^2 - 2 * Y * (X1+X2+...+Xn) + (X1^2 + X2^2 +...+ Xn^2))
=E( (X1^2 + X2^2 +...+ Xn^2) - n * Y^2 )
注意 EX1 = EX2 = ... = EXn = EY = EX;
VarX1 = VarX2 = ... = VarXn = VarX = E(X^2) - (EX)^2
VarY = VarX / n (这条不是明显的,但是可以展开后很容易地证出来,而且也算是一个常识性的结论)
所以E A = n(VarX + (EX)^2) - n * (VarY + (EY)^2)
= n(VarX + (EX)^2) - n * (VarX/n + (EX)^2)
= (n-1) VarX
所以 E S = VarX;得证。