1+1为什么等于2?

 我来答
蔷祀
高粉答主

推荐于2020-06-06 · 关注我不会让你失望
知道小有建树答主
回答量:552
采纳率:100%
帮助的人:15万
展开全部

1+1=2 是初等数学范围内的数值计算等式。

当某个原始人第一个意识到1+1=2,进而认识到两个数相加得到另一个确定的数时,这一刻是人类文明的伟大时刻,因为他发现了一个非常重要的性质——可加性。这个性质及其推广正是数学的全部根基,它甚至说出数学为什么用途广泛的同时,告诉我们数学的局限性。

人们知道,世界上存在三类不同的事物。一类是完全满足可加性的量。比如质量,容器里的气体总质量总是等于每个气体分子质量之和。对于这些量,1+1=2是完全成立的。

扩展资料

皮亚诺公理,也称皮亚诺公设,是数学家皮亚诺(皮阿罗)提出的关于自然数的五条公理系统。根据这五条公理可以建立起一阶算术系统,也称皮亚诺算术系统。

皮亚诺的这五条公理用非形式化的方法叙述如下:

①0是自然数;

②每一个确定的自然数 a,都有一个确定的后继数x' ,x' 也是自然数(一个数的后继数就是紧接在这个数后面的数,例如,1的后继数是2,2的后继数是3等等);

③如果b、c都是自然数a的后继数,那么b = c;

④0不是任何自然数的后继数;

⑤设S是自然数集的一个子集,且(1)0属于S;(2)如果n属于S,那么n'也属于S。

(这条公理也叫归纳公理,保证了数学归纳法的正确性)

更正式的定义如下:  一个戴德金-皮亚诺结构是这样的一个三元组(X, x, f),其中X是一个集合,x为X中一个元素,f是X到自身的映射,且符合以下条件:

x不在f的值域内;

f为一个单射;

若x∈A 且 " a∈A 蕴涵 f(a)∈A",则A=X。

参考资料1+1=2(数学公式)_百度百科  

匿名用户
推荐于2017-11-25
展开全部
1+1=2,幼儿园里的小孩都知道,就是这么简单的东西,却耗费了大数学家陈景润一生的心血,虽大有斩获,却临终也不敢说1+1就是等于2。为什么?是不是我们每个人都知道这里面的奥妙呢?
先来点儿基础知识:
偶数:能被2整除的数,如2、4、6、8、10、12、14、16、18、20等等。
质数(以前叫素数):只能被它自己和1整除的数,如2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、53、59、61、67、71、73、79、83、89、97等等,不知道谁规定的1不是质数。
哥德巴赫猜想:任何一个大偶数(大于等于6),都是两个奇质数之和(即:除2之外的任何质数)。
原文是:任何不小于6的偶数,都是两个奇质数之和;任何不小于9的奇数,都是3个奇质数之和。
此人1742年6月7日提出了这个猜想,经过世界各国几代数学家的不懈努力,直到1920年才多少有了点的眉目,真是“不学无术”,只会提问题,不会解决问题,弄得后人为他这一句话忙活了几百年,直到现在还没解决。但后来有人说,提出问题的人比解决问题的人更有学问,你说是吗?
验证一下这个猜想,先从小偶数开始:
6=3+3,8=5+3,10=5+5=3+7,12=7+5,14=7+7,16=13+3=11+5,18=13+5,20=17+3=13+7,22=19+3=17+5=11+11,24=19+5=17+7=13+11,26=23+3=19+7=13+13,28=23+5=17+11=15+13,30=23+7=19+11=17+13,好像都对,但是,是不是一个非常大的偶数,也是两个质数的和呢?
算了,不验证了,这样下去何年何月才是个头啊?!况且有人用超级计算机已经验证到2的3000多次方,都符合上述规律。但再大的数会不会也符合这个规律呢?难道你没看出点门路来?就没明白1+1=2是什么意思?
用一个公式来说明:2N=p+q。(此公式如被证明是对的,那么哥德巴赫猜想就不是猜想,而是定理了)
说明:N={3,4,5,6,7,8,9,10,11,12,13,14...},p、q是大于2的质数。
我的理解:1+1=2是指任何一个大于等于6的偶数,都可以分解为两个质数相加,而不需要3个,或更多个。
陈景润完成了1+2,即需要3个,距离仅需要2个还有千里之遥。
要想完全证明1+1=2,还待时日。

再补充一点东东:
有人说,证明“猜想”,本来是非常简单的,却把简单的问题复杂化作为什么高深课题去研究,葬送了一批批数学家的青春年华。说不定什么时候,某个“权威”提出要证明2=1+1,用什么“高级微分数论筛法”筛出2=1+0.999¨¨¨来,也许会轰动一时。正如列宁说的,没有上帝,也要弄些泥巴捏出一个上帝来供人们朝拜。2=1+1,幼儿园的小朋友都明白,如果2=1+0.999……,或者2 =1+1.000……1,一些小学生也感到茫然,以为是什么高深的学问。李政道博士说过,把简单的问题复杂化不是学问。
这只是对数学一无所知的人的谣传。
陈氏定理(陈景润先生):每个大于等于12的偶数可以表示成p+q1*q2(应是[P2×P3 ],未定义q1、q2为素数,下同)的形式,其中p,q1,q2都是素数。这个定理简称为1+2(1+2=3,应为“1+2”,这是很简单的基本知识,做学问既要谦虚,又要扎扎实实,不能浮躁。)。在陈氏定理之前,有认证明过:每个大于等于30的偶数可以表示成p+q1*q2*q3的形式,其中p,q1,q2,q3都是素数。这个定理简称为1+3(1+3=4,应是“1+3”)。我想现在你可以知道了:1+1(1+1只是加法,应该是“1+1”)只是一个简称,代表的是:每个大于等于6的偶数可以表示成p+q1的形式,其中p,q1都是素数(奇素数)。这个命题简称为1+1(应该是“1+1”),其实就是哥德巴赫猜想了。
你现在可以自己推广一下简称为1+n的定理,甚至相象2+n,3+n...,所有这些都是比哥德巴赫猜想弱。因为哥德巴赫猜想很难证明,历史上的数学家们希望可以先证明一些较弱的定理,从中找到证明哥德巴赫猜想的思路或者启示。目前最好的结果就是陈景润的1+1(应是“1+2”)。你有权利说这样的路子无助于解决哥德巴赫猜想,但别人也有权利认为这是一个好的思路。(实践证明这是一条死胡同,希望你们不要再钻进去,这是忠告)。
本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
匿名用户
2013-10-15
展开全部
1.因为2-1=1啊, 呵呵
2.因为1742年6月7日,德国数学家哥德巴赫在写给著名数学家欧拉的一封信中,提出了两个大胆的猜想:
一、任何不小于6的偶数,都是两个奇质数之和;
二、任何不小于9的奇数,都是三个奇质数之和。
这就是数学史上著名的“哥德巴赫猜想”。显然,第二个猜想是第一个猜想的推论。因此,只需在两个猜想中证明一个就足够了。
同年6月30日,欧拉在给哥德巴赫的回信中, 明确表示他深信哥德巴赫的这两个猜想都是正确的定理,但是欧拉当时还无法给出证明。由于欧拉是当时欧洲最伟大的数学家,他对哥德巴赫猜想的信心,影响到了整个欧洲乃至世界数学界。从那以后,许多数学家都跃跃欲试,甚至一生都致力于证明哥德巴赫猜想。可是直到19世纪末,哥德巴赫猜想的证明也没有任何进展。证明哥德巴赫猜想的难度,远远超出了人们的想象。有的数学家把哥德巴赫猜想比喻为“数学王冠上的明珠”。
我们从6=3+3、8=3+5、10=5+5、……、100=3+97=11+89=17+83、……这些具体的例子中,可以看出哥德巴赫猜想都是成立的。有人甚至逐一验证了3300万以内的所有偶数,竟然没有一个不符合哥德巴赫猜想的。20世纪,随着计算机技术的发展,数学家们发现哥德巴赫猜想对于更大的数依然成立。可是自然数是无限的,谁知道会不会在某一个足够大的偶数上,突然出现哥德巴赫猜想的反例呢?于是人们逐步改变了探究问题的方式。
1900年,20世纪最伟大的数学家希尔伯特,在国际数学会议上把“哥德巴赫猜想”列为23个数学难题之一。此后,20世纪的数学家们在世界范围内“联手”进攻“哥德巴赫猜想”堡垒,终于取得了辉煌的成果。
20世纪的数学家们研究哥德巴赫猜想所采用的主要方法,是筛法、圆法、密率法和三角和法等等高深的数学方法。解决这个猜想的思路,就像“缩小包围圈”一样,逐步逼近最后的结果。
1920年,挪威数学家布朗证明了定理“9+9”,由此划定了进攻“哥德巴赫猜想”的“大包围圈”。这个“9+9”是怎么回事呢?所谓“9+9”,翻译成数学语言就是:“任何一个足够大的偶数,都可以表示成其它两个数之和,而这两个数中的每个数,都是9个奇质数之积。” 从这个“9+9”开始,全世界的数学家集中力量“缩小包围圈”,当然最后的目标就是“1+1”了。
1924年,德国数学家雷德马赫证明了定理“7+7”。很快,“6+6”、“5+5”、“4+4”和“3+3”逐一被攻陷。1957年,我国数学家王元证明了“2+3”。1962年,中国数学家潘承洞证明了“1+5”,同年又和王元合作证明了“1+4”。1965年,苏联数学家证明了“1+3”。
1966年,我国著名数学家陈景润攻克了“1+2”,也就是:“任何一个足够大的偶数,都可以表示成两个数之和,而这两个数中的一个就是奇质数,另一个则是两个奇质数的积。”这个定理被世界数学界称为“陈氏定理”。
由于陈景润的贡献,人类距离哥德巴赫猜想的最后结果“1+1”仅有一步之遥了。但为了实现这最后的一步,也许还要历经一个漫长的探索过程。有许多数学家认为,要想证明“1+1”,必须通过创造新的数学方法,以往的路很可能都是走不通的。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
345703320
高粉答主

2019-11-23 · 每个回答都超有意思的
知道大有可为答主
回答量:3.8万
采纳率:100%
帮助的人:1940万
展开全部
1+1为什么等于2?

1+1=2,幼儿园里的小孩都知道,就是这么简单的东西,却耗费了大数学家陈景润一生的心血,虽大有斩获,却临终也不敢说1+1就是等于2。为什么?是不是我们每个人都知道这里面的奥妙呢?
先来点儿基础知识:
偶数:能被2整除的数,如2、4、6、8、10、12、14、16、18、20等等。
质数(以前叫素数):只能被它自己和1整除的数,如2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、53、59、61、67、71、73、79、83、89、97等等,不知道谁规定的1不是质数。
哥德巴赫猜想:任何一个大偶数(大于等于6),都是两个奇质数之和(即:除2之外的任何质数)。
原文是:任何不小于6的偶数,都是两个奇质数之和;任何不小于9的奇数,都是3个奇质数之和。
此人1742年6月7日提出了这个猜想,经过世界各国几代数学家的不懈努力,直到1920年才多少有了点的眉目,真是“不学无术”,只会提问题,不会解决问题,弄得后人为他这一句话忙活了几百年,直到现在还没解决。但后来有人说,提出问题的人比解决问题的人更有学问,你说是吗?
验证一下这个猜想,先从小偶数开始:
6=3+3,8=5+3,10=5+5=3+7,12=7+5,14=7+7,16=13+3=11+5,18=13+5,20=17+3=13+7,22=19+3=17+5=11+11,24=19+5=17+7=13+11,26=23+3=19+7=13+13,28=23+5=17+11=15+13,30=23+7=19+11=17+13,好像都对,但是,是不是一个非常大的偶数,也是两个质数的和呢?
算了,不验证了,这样下去何年何月才是个头啊?!况且有人用超级计算机已经验证到2的3000多次方,都符合上述规律。但再大的数会不会也符合这个规律呢?难道你没看出点门路来?就没明白1+1=2是什么意思?
用一个公式来说明:2N=p+q。(此公式如被证明是对的,那么哥德巴赫猜想就不是猜想,而是定理了)
说明:N={3,4,5,6,7,8,9,10,11,12,13,14...},p、q是大于2的质数。
我的理解:1+1=2是指任何一个大于等于6的偶数,都可以分解为两个质数相加,而不需要3个,或更多个。
陈景润完成了1+2,即需要3个,距离仅需要2个还有千里之遥。
要想完全证明1+1=2,还待时日。

再补充一点东东:
有人说,证明“猜想”,本来是非常简单的,却把简单的问题复杂化作为什么高深课题去研究,葬送了一批批数学家的青春年华。说不定什么时候,某个“权威”提出要证明2=1+1,用什么“高级微分数论筛法”筛出2=1+0.999¨¨¨来,也许会轰动一时。正如列宁说的,没有上帝,也要弄些泥巴捏出一个上帝来供人们朝拜。2=1+1,幼儿园的小朋友都明白,如果2=1+0.999……,或者2 =1+1.000……1,一些小学生也感到茫然,以为是什么高深的学问。李政道博士说过,把简单的问题复杂化不是学问。
这只是对数学一无所知的人的谣传。
陈氏定理(陈景润先生):每个大于等于12的偶数可以表示成p+q1*q2(应是[P2×P3 ],未定义q1、q2为素数,下同)的形式,其中p,q1,q2都是素数。这个定理简称为1+2(1+2=3,应为“1+2”,这是很简单的基本知识,做学问既要谦虚,又要扎扎实实,不能浮躁。)。在陈氏定理之前,有认证明过:每个大于等于30的偶数可以表示成p+q1*q2*q3的形式,其中p,q1,q2,q3都是素数。这个定理简称为1+3(1+3=4,应是“1+3”)。我想现在你可以知道了:1+1(1+1只是加法,应该是“1+1”)只是一个简称,代表的是:每个大于等于6的偶数可以表示成p+q1的形式,其中p,q1都是素数(奇素数)。这个命题简称为1+1(应该是“1+1”),其实就是哥德巴赫猜想了。
你现在可以自己推广一下简称为1+n的定理,甚至相象2+n,3+n...,所有这些都是比哥德巴赫猜想弱。因为哥德巴赫猜想很难证明,历史上的数学家们希望可以先证明一些较弱的定理,从中找到证明哥德巴赫猜想的思路或者启示。目前最好的结果就是陈景润的1+1(应是“1+2”)。你有权利说这样的路子无助于解决哥德巴赫猜想,但别人也有权利认为这是一个好的思路。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
桂枝汤09
2020-08-06
知道答主
回答量:2
采纳率:0%
帮助的人:1169
展开全部
1+1=2 是初等数学范围内的数值计算等式。

当某个原始人第一个意识到1+1=2,进而认识到两个数相加得到另一个确定的数时,这一刻是人类文明的伟大时刻,因为他发现了一个非常重要的性质——可加性。这个性质及其推广正是数学的全部根基,它甚至说出数学为什么用途广泛的同时,告诉我们数学的局限性。

人们知道,世界上存在三类不同的事物。一类是完全满足可加性的量。比如质量,容器里的气体总质量总是等于每个气体分子质量之和。对于这些量,1+1=2是完全成立的。

扩展资料:

皮亚诺公理,也称皮亚诺公设,是数学家皮亚诺(皮阿罗)提出的关于自然数的五条公理系统。根据这五条公理可以建立起一阶算术系统,也称皮亚诺算术系统。

皮亚诺的这五条公理用非形式化的方法叙述如下:

①0是自然数;

②每一个确定的自然数 a,都有一个确定的后继数x' ,x' 也是自然数(一个数的后继数就是紧接在这个数后面的数,例如,1的后继数是2,2的后继数是3等等);

③如果b、c都是自然数a的后继数,那么b = c;

④0不是任何自然数的后继数;

⑤设S是自然数集的一个子集,且(1)0属于S;(2)如果n属于S,那么n'也属于S。

(这条公理也叫归纳公理,保证了数学归纳法的正确性)

更正式的定义如下:  一个戴德金-皮亚诺结构是这样的一个三元组(X, x, f),其中X是一个集合,x为X中一个元素,f是X到自身的映射,且符合以下条件:

x不在f的值域内;

f为一个单射;

若x∈A 且 " a∈A 蕴涵 f(a)∈A",则A=X。

参考资料:1+1=2(数学公式)_百度百科
本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(85)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式