
证明:两个连续奇数的平方差是8的倍,并且等于这两个数的和的两倍
2个回答
2010-11-20
展开全部
(最好)设这两个连续奇数为2n-1,2n+1,n∈N,n>1
则(2n+1)²-(2n-1)²=(2n+1+2n-1)[2n+1-(2n-1)]=8n,显然是8的倍数;
而(2n+1)+(2n-1)=4n,8n显然是4n的倍数。
证毕。
则(2n+1)²-(2n-1)²=(2n+1+2n-1)[2n+1-(2n-1)]=8n,显然是8的倍数;
而(2n+1)+(2n-1)=4n,8n显然是4n的倍数。
证毕。

2021-01-25 广告
边缘计算可以咨询图为信息科技(深圳)有限公司了解一下,图为信息科技(深圳)有限公司(简称:图为信息科技)是基于视觉处理的边缘计算方案解决商。作为一家创新企业,多年来始终专注于人工智能领域的发展,致力于为客户提供满意的解决方案。...
点击进入详情页
本回答由图为信息科技(深圳)有限公司提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询