求所有的导数公式

w我用iPad尽量发文字... w我用iPad

尽量发文字
展开
 我来答
CY辞言
高粉答主

推荐于2019-11-03 · 关注我不会让你失望
知道小有建树答主
回答量:69
采纳率:100%
帮助的人:6.3万
展开全部
  1. y=c(c为常数) y'=0

  2. y=x^n y'=nx^(n-1)

  3. y=a^x y'=a^xlna

  4. y=e^x y'=e^x

  5. y=logax y'=logae/x

  6. y=lnx y'=1/x

  7. y=sinx y'=cosx

  8. y=cosx y'=-sinx

  9. y=tanx y'=1/cos^2x

  10. y=cotx y'=-1/sin^2x

  11. y=arcsinx y'=1/√1-x^2

  12. y=arccosx y'=-1/√1-x^2

  13. y=arctanx y'=1/1+x^2

  14. y=arccotx y'=-1/1+x^2

拓展资料:

导数(Derivative)是微积分中的重要基础概念。当函数y=f(x)的自变量x在一点x0上产生一个增量Δx时,函数输出值的增量Δy与自变量增量Δx的比值在Δx趋于0时的极限a如果存在,a即为在x0处的导数,记作f'(x0)或df(x0)/dx。

导数是函数的局部性质。一个函数在某一点的导数描述了这个函数在这一点附近的变化率。如果函数的自变量和取值都是实数的话,函数在某一点的导数就是该函数所代表的曲线在这一点上的切线斜率。导数的本质是通过极限的概念对函数进行局部的线性逼近。例如在运动学中,物体的位移对于时间的导数就是物体的瞬时速度。

导数的计算

计算已知函数的导函数可以按照导数的定义运用变化比值的极限来计算。在实际计算中,大部分常见的解析函数都可以看作是一些简单的函数的和、差、积、商或相互复合的结果。只要知道了这些简单函数的导函数,那么根据导数的求导法则,就可以推算出较为复杂的函数的导函数。

导数的求导法则

由基本函数的和、差、积、商或相互复合构成的函数的导函数则可以通过函数的求导法则来推导。基本的求导法则如下:

1、求导的线性:对函数的线性组合求导,等于先对其中每个部分求导后再取线性组合(即①式)。

2、两个函数的乘积的导函数:一导乘二+一乘二导(即②式)。

3、两个函数的商的导函数也是一个分式:(子导乘母-子乘母导)除以母平方(即③式)。

4、如果有复合函数,则用链式法则求导。

口诀

  • 常为零,幂降次

  • 对倒数(e为底时直接倒数,a为底时乘以1/lna)

  • 指不变(特别的,自然对数的指数函数完全不变,一般的指数函数须乘以lna)

  • 正变余,余变正

  • 切割方(切函数是相应割函数(切函数的倒数)的平方)

  • 割乘切,反分式

参考资料:导数 百度百科

mike
2014-06-28 · 知道合伙人教育行家
mike
知道合伙人教育行家
采纳数:15109 获赞数:42250
担任多年高三教学工作。

向TA提问 私信TA
展开全部

c'=0

x^m=mx^(m-1)

sinx'=cosx,cosx'=-sinx,tanx'=sec^2x

a^x'=a^xlna,e^x'=e^x

lnx'=1/x,log(a,x)'=1/(xlna)

(f±g)'=f'±g'

(fg)'=f'g+fg'

(f/g)'=(f'g-fg')/g^2

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
Nicholas_hou
推荐于2017-11-18 · TA获得超过1.5万个赞
知道大有可为答主
回答量:1.3万
采纳率:54%
帮助的人:3678万
展开全部
1.y=c(c为常数) y'=0
2.y=x^n y'=nx^(n-1)
3.y=a^x y'=a^xlna
y=e^x y'=e^x
4.y=logax y'=logae/x
y=lnx y'=1/x
5.y=sinx y'=cosx
6.y=cosx y'=-sinx
7.y=tanx y'=1/cos^2x
8.y=cotx y'=-1/sin^2x
9.y=arcsinx y'=1/√1-x^2
10.y=arccosx y'=-1/√1-x^2
11.y=arctanx y'=1/1+x^2
12.y=arccotx y'=-1/1+x^2
本回答被提问者采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
tweezers88
2014-06-29 · TA获得超过1033个赞
知道答主
回答量:110
采纳率:0%
帮助的人:101万
展开全部
函数导数公式
这里将列举几个基本的函数的导数以及它们的推导过程:
1.y=c(c为常数) y'=0
2.y=x^n y'=nx^(n-1)
3.y=a^x y'=a^xlna
y=e^x y'=e^x
4.y=logax y'=logae/x
y=lnx y'=1/x
5.y=sinx y'=cosx
6.y=cosx y'=-sinx
7.y=tanx y'=1/cos^2x
8.y=cotx y'=-1/sin^2x
9.y=arcsinx y'=1/√1-x^2
10.y=arccosx y'=-1/√1-x^2
11.y=arctanx y'=1/1+x^2
12.y=arccotx y'=-1/1+x^2
在推导的过程中有这几个常见的公式需要用到:
1.y=f[g(x)],y'=f'[g(x)]&8226;g'(x)『f'[g(x)]中g(x)看作整个变量,而g'(x)中把x看作变量』
2.y=u/v,y'=(u'v-uv')/v^2
3.y=f(x)的反函数是x=g(y),则有y'=1/x'
证:1.显而易见,y=c是一条平行于x轴的直线,所以处处的切线都是平行于x的,故斜率为0。用导数的定义做也是一样的:y=c,⊿y=c-c=0,lim⊿x→0⊿y/⊿x=0。
2.这个的推导暂且不证,因为如果根据导数的定义来推导的话就不能推广到n为任意实数的一般情况。在得到 y=e^x y'=e^x和y=lnx y'=1/x这两个结果后能用复合函数的求导给予证明。
3.y=a^x,
⊿y=a^(x+⊿x)-a^x=a^x(a^⊿x-1)
⊿y/⊿x=a^x(a^⊿x-1)/⊿x
如果直接令⊿x→0,是不能导出导函数的,必须设一个辅助的函数β=a^⊿x-1通过换元进行计算。由设的辅助函数可以知道:⊿x=loga(1+β)。
所以(a^⊿x-1)/⊿x=β/loga(1+β)=1/loga(1+β)^1/β
显然,当⊿x→0时,β也是趋向于0的。而limβ→0(1+β)^1/β=e,所以limβ→01/loga(1+β)^1/β=1/logae=lna。
把这个结果代入lim⊿x→0⊿y/⊿x=lim⊿x→0a^x(a^⊿x-1)/⊿x后得到lim⊿x→0⊿y/⊿x=a^xlna。
可以知道,当a=e时有y=e^x y'=e^x。
4.y=logax
⊿y=loga(x+⊿x)-logax=loga(x+⊿x)/x=loga[(1+⊿x/x)^x]/x
⊿y/⊿x=loga[(1+⊿x/x)^(x/⊿x)]/x
因为当⊿x→0时,⊿x/x趋向于0而x/⊿x趋向于∞,所以lim⊿x→0loga(1+⊿x/x)^(x/⊿x)=logae,所以有
lim⊿x→0⊿y/⊿x=logae/x。
可以知道,当a=e时有y=lnx y'=1/x。
这时可以进行y=x^n y'=nx^(n-1)的推导了。因为y=x^n,所以y=e^ln(x^n)=e^nlnx,
所以y'=e^nlnx&8226;(nlnx)'=x^n&8226;n/x=nx^(n-1)。
5.y=sinx
⊿y=sin(x+⊿x)-sinx=2cos(x+⊿x/2)sin(⊿x/2)
⊿y/⊿x=2cos(x+⊿x/2)sin(⊿x/2)/⊿x=cos(x+⊿x/2)sin(⊿x/2)/(⊿x/2)
所以lim⊿x→0⊿y/⊿x=lim⊿x→0cos(x+⊿x/2)&8226;lim⊿x→0sin(⊿x/2)/(⊿x/2)=cosx
6.类似地,可以导出y=cosx y'=-sinx。
7.y=tanx=sinx/cosx
y'=[(sinx)'cosx-sinx(cos)']/cos^2x=(cos^2x+sin^2x)/cos^2x=1/cos^2x
8.y=cotx=cosx/sinx
y'=[(cosx)'sinx-cosx(sinx)']/sin^2x=-1/sin^2x
9.y=arcsinx
x=siny
x'=cosy
y'=1/x'=1/cosy=1/√1-sin^2y=1/√1-x^2
10.y=arccosx
x=cosy
x'=-siny
y'=1/x'=-1/siny=-1/√1-cos^2y=-1/√1-x^2
11.y=arctanx
x=tany
x'=1/cos^2y
y'=1/x'=cos^2y=1/sec^2y=1/1+tan^2x=1/1+x^2
12.y=arccotx
x=coty
x'=-1/sin^2y
y'=1/x'=-sin^2y=-1/csc^2y=-1/1+cot^2y=-1/1+x^2
另外在对双曲函数shx,chx,thx等以及反双曲函数arshx,archx,arthx等和其他较复杂的复合函数求导时通过查阅导数表和运用开头的公式与
4.y=u土v,y'=u'土v'
5.y=uv,y=u'v+uv'
均能较快捷地求得结果。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
匿名用户
2017-10-12
展开全部
基本函数求导公式:
y=x^n, y'=nx^(n-1)
y=a^x, y'=a^xlna
y=e^x, y'=e^x
y=log(a)x ,y'=1/x lna
y=lnx y'=1/x
y=sinx y'=cosx
y=cosx y'=-sinx
y=tanx y'=1/cos²x
y=cotanx y'=-1/sin²x
y=arcsinx y'=1/√(1-x²)
y=arccosx y'=-1/√(1-x²)
y=arctanx y'=1/(1+x²)
y=arccotanx y'=-1/(1+x²)
希望对您有所帮助。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(3)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式