求第四小题的面积

 我来答
sinerpo
2016-12-07 · TA获得超过1.6万个赞
知道大有可为答主
回答量:5065
采纳率:100%
帮助的人:3427万
展开全部
首先由方程x=acos^3t,y=asin^3t可确定围成的平面图形为星形,且被x,y轴分成4等份,求出在第一象限的图形面积,再乘以4可得所示面积,计算参数 t 的范围为[0,π/2],得
∫ydx=4*∫asin^3td(acos^3t),t:π/2→0
=4*∫asin^3t(acos^3t)'dt,t:π/2→t0 
=4*∫asin^3t(-3a*sint *cos^2t)dt,t:π/2→t0
=-3*a^2∫sin^4t*cos^2tdt
=-3*a^2∫sin^4t*(1-sin^2t)tdt
-3a^2∫(sin^4t-sin^6t)dt
=3/8*πa
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式