∫√x²-9/x dx
2个回答
展开全部
令x=3sect
∫[√(x²-9)/x]dx
=∫[√(9sec²t-9)/(3sect)]d(3sect)
=∫[3tan²t·3sect·tant/(3sect)]dt
=∫3(tan³t)dt
=∫[3(1-cos²t)sint/cos³t]dt
=∫[(3/cost)-(3/cos³t)]d(cost)
=3ln|cost|+ (3/2)/cos²t +C
=3ln|3/x| +(3/2)/(3/x)² +C
=-3ln|x/3| +(1/6)x² +C
∫[√(x²-9)/x]dx
=∫[√(9sec²t-9)/(3sect)]d(3sect)
=∫[3tan²t·3sect·tant/(3sect)]dt
=∫3(tan³t)dt
=∫[3(1-cos²t)sint/cos³t]dt
=∫[(3/cost)-(3/cos³t)]d(cost)
=3ln|cost|+ (3/2)/cos²t +C
=3ln|3/x| +(3/2)/(3/x)² +C
=-3ln|x/3| +(1/6)x² +C
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
引用xuzhouliuying的回答:
令x=3sect
∫[√(x²-9)/x]dx
=∫[√(9sec²t-9)/(3sect)]d(3sect)
=∫[3tan²t·3sect·tant/(3sect)]dt
=∫3(tan³t)dt
=∫[3(1-cos²t)sint/cos³t]dt
=∫[(3/cost)-(3/cos³t)]d(cost)
=3ln|cost|+ (3/2)/cos²t +C
=3ln|3/x| +(3/2)/(3/x)² +C
=-3ln|x/3| +(1/6)x² +C
令x=3sect
∫[√(x²-9)/x]dx
=∫[√(9sec²t-9)/(3sect)]d(3sect)
=∫[3tan²t·3sect·tant/(3sect)]dt
=∫3(tan³t)dt
=∫[3(1-cos²t)sint/cos³t]dt
=∫[(3/cost)-(3/cos³t)]d(cost)
=3ln|cost|+ (3/2)/cos²t +C
=3ln|3/x| +(3/2)/(3/x)² +C
=-3ln|x/3| +(1/6)x² +C
展开全部
第四行根号开错了
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询