向量共面是什么意思

 我来答
振兴文史文章8952
2017-02-05 · TA获得超过4937个赞
知道大有可为答主
回答量:9426
采纳率:83%
帮助的人:540万
展开全部
共面定理的定义为能平移到一个平面上的三个向量称为共面向量。共面向量定理是数学学科的基本定理之一。属于高中数学立体几何的教学范畴。主要用于证明两个向量共面,进而证明面面垂直等一系列复杂定理。

推论1
设OABC是不共面的四点 则对空间任意一点P 都存在唯一的有序实数组(x,y,z)
使得OP=xOA+yOB+zOC {OP,OA,OB,OC均表示向量} 说明:若x+y+z=1 则PABC四点共面 (但PABC四点共面的时候,若O在平面ABP内,则x+y+z不一定等于1,即x+y+z=1 是P.A.B.C四点共面的充分不必要条件)
证明:
1)唯一性:
设另有一组实数x',y',z' 使得OP=x'OA+y'OB+z'OC
则有xOA+yOB+zOC=x'OA+y'OB+z'OC
∴(x-x')OA+(y-y')OB+(z-z')OC=0
∵OA、OB、OC不共面
∴x-x'=y-y'=z-z'=0即x=x'、y=y'、z=z'
故实数x,y,z是唯一的
2)若x+y+z=1 则PABC四点共面:
假设OP=xOA+yOB+zOC且x+y+z=1 且PABC不共面
那么z=1-x-y 则OP=xOA+yOB+OC-xOC-yOC
OP=OC+xCA+yCB(CP=xCA+yCB)
点P位于平面ABC内 与假设中的条件矛盾 故原命题成立
上海华然企业咨询
2024-10-28 广告
作为上海华然企业咨询有限公司的一员,我们深知大模型测试对于企业数字化转型与智能决策的重要性。在应对此类测试时,我们注重数据的精准性、算法的先进性及模型的适用性,确保大模型能够精准捕捉市场动态,高效分析企业数据,为管理层提供科学、前瞻的决策支... 点击进入详情页
本回答由上海华然企业咨询提供
种赋奚永昌
2019-11-08 · TA获得超过3652个赞
知道大有可为答主
回答量:3142
采纳率:31%
帮助的人:257万
展开全部
三条向量共面的意思是他们三个在一个平面中,不知道是否允许平移之后在同一个平面内,也就是说如果三个响亮不在同一个平面内,但是可以通过平移到达同一个平面内,那么这三个响亮是否称为共面,如果是的话那么两个向量共面的说法是否可认为两个向量可以通过平移到达同一平面,那么这样一来所有两个向量都共面了
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
西域牛仔王4672747
2017-02-05 · 知道合伙人教育行家
西域牛仔王4672747
知道合伙人教育行家
采纳数:30577 获赞数:146291
毕业于河南师范大学计算数学专业,学士学位, 初、高中任教26年,发表论文8篇。

向TA提问 私信TA
展开全部
所有向量都平行于同一个平面,叫共面 。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
在卧龙峡写生的红太狼

2020-12-09 · TA获得超过1万个赞
知道大有可为答主
回答量:1.3万
采纳率:74%
帮助的人:491万
展开全部
共面定理的定义为能平移到一个平面上的三个向量称为共面向量。共面向量定理是数学学科的基本定理之一。属于高中数学立体几何的教学范畴。主要用于证明两个向量共面,进而证明面面垂直等一系列复杂定理。共面定理的定义为能平移到一个平面上的三个向量称为共面向量。共面向量定理是数学学科的基本定理之一。属于高中数学立体几何的教学范畴。主要用于证明两个向量共面,进而证明面面垂直等一系列复杂定理。

推论1
设OABC是不共面的四点 则对空间任意一点P 都存在唯一的有序实数组(x,y,z)
使得OP=xOA+yOB+zOC {OP,OA,OB,OC均表示向量} 说明:若x+y+z=1 则PABC四点共面 (但PABC四点共面的时候,若O在平面ABP内,则x+y+z不一定等于1,即x+y+z=1 是P.A.B.C四点共面的充分不必要条件)
证明:
1)唯一性:
设另有一组实数x',y',z' 使得OP=x'OA+y'OB+z'OC
则有xOA+yOB+zOC=x'OA+y'OB+z'OC
∴(x-x')OA+(y-y')OB+(z-z')OC=0
∵OA、OB、OC不共面
∴x-x'=y-y'=z-z'=0即x=x'、y=y'、z=z'
故实数x,y,z是唯一的
2)若x+y+z=1 则PABC四点共面:
假设OP=xOA+yOB+zOC且x+y+z=1 且PABC不共面
那么z=1-x-y 则OP=xOA+yOB+OC-xOC-yOC
OP=OC+xCA+yCB(CP=xCA+yCB)
点P位于平面ABC内 与假设中的条件矛盾 故原命题成立
本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 1条折叠回答
收起 更多回答(2)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式