∫ cot²xdx的不定积分。

 我来答
帐号已注销
2019-03-07 · TA获得超过82.9万个赞
知道大有可为答主
回答量:2602
采纳率:100%
帮助的人:167万
展开全部

∫cot²xdx=-cosx/sinx-x+C。(C为积分常数)

解答过程如下:

∫cot²xdx

=∫cos²x/sin²xdx

=∫(1-sin²x)/sin²xdx

=∫(1/sin²x)-1 dx

=-cosx/sinx-x+C

扩展资料:

分部积分:

(uv)'=u'v+uv',得:u'v=(uv)'-uv'。

两边积分得:∫ u'v dx=∫ (uv)' dx - ∫ uv' dx。

即:∫ u'v dx = uv - ∫ uv' d,这就是分部积分公式

也可简写为:∫ v du = uv - ∫ u dv。

不定积分的公式

1、∫ a dx = ax + C,a和C都是常数

2、∫ x^a dx = [x^(a + 1)]/(a + 1) + C,其中a为常数且 a ≠ -1

3、∫ 1/x dx = ln|x| + C

4、∫ a^x dx = (1/lna)a^x + C,其中a > 0 且 a ≠ 1

5、∫ e^x dx = e^x + C

6、∫ cosx dx = sinx + C

7、∫ sinx dx = - cosx + C

8、∫ cotx dx = ln|sinx| + C = - ln|cscx| + C

9、∫ secx dx =ln|cot(x/2)| + C = (1/2)ln|(1 + sinx)/(1 - sinx)| + C = - ln|secx - tanx| + C = ln|secx + tanx| + C

网易云信
2023-12-06 广告
UIkit是一款轻量级、模块化、基于jQuery的UI框架,它提供了大量易于使用的UI组件,包括按钮、表单、表格、对话框、通知等等。UIkit的设计理念是尽可能地简洁和灵活,开发者可以根据自己的需求自由地选择需要的组件和样式,从而快速构建出... 点击进入详情页
本回答由网易云信提供
庆迷电1M
2017-11-21 · TA获得超过247个赞
知道答主
回答量:39
采纳率:100%
帮助的人:12万
展开全部
∫cot²xdx
=∫cos²x/sin²xdx
=∫(1-sin²x)/sin²xdx
=∫(1/sin²x)-1 dx
=-cosx/sinx-x+C
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
百度网友af34c30f5
2017-11-20 · TA获得超过4.4万个赞
知道大有可为答主
回答量:1.8万
采纳率:65%
帮助的人:6745万
展开全部
∫ cot²xdx=∫ csc²x-1dx=-cotx-x+C
本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(1)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式