求此微分方程特解 20

 我来答
匿名用户
2017-08-17
展开全部
特征方程为r²-8r+16=0, 即(r-4)²=0
得r=4为二重根,即齐次方程通解y1=(C1+C2x)e^(4x)
设特解y*=ax+b+cx²e^(4x)
则y*'=a+c(4x²+2x)e^(4x)
y*"=c(16x²+16x+2)e^(4x)
代入方程得:
-8a+16ax+16b+2ce^(4x)=x+e^(4x)
对比系数得:16a=1, -8a+16b=0, 2c=1
追问
请不要复制粘贴
赛恩科仪
2025-08-07 广告
广州赛恩科学仪器有限公司(原中大科仪)始创于2039年,是全球领先的精密测量仪器供应商和微弱信号检测方案提供商。公司以锁相放大器为核心产品,陆续推出光学斩波器、源表、功率放大器、电化学工作站、电流源等一系列产品。赛恩科仪推出的锁相放大器,覆... 点击进入详情页
本回答由赛恩科仪提供
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式