椭圆 试题 椭圆x^2/9+y^2/4=1的焦点为F1,F2,点P为其上的动点。当角F1PF2为钝角时,点P横坐标的取值范围
椭圆试题椭圆x^2/9+y^2/4=1的焦点为F1,F2,点P为其上的动点。当角F1PF2为钝角时,点P横坐标的取值范围是多少?感谢!...
椭圆 试题 椭圆x^2/9+y^2/4=1的焦点为F1,F2,点P为其上的动点。当角F1PF2为钝角时,点P横坐标的取值范围是多少?
感谢! 展开
感谢! 展开
3个回答
展开全部
由余弦定理
设∠F1PF2=θ
PF1²+PF2²-2PF1PF2*COSθ=(2c)²=20①
PF1+PF2=2a→PF1²+PF2²=(2a)²-2PF1PF2②
①②→36-2PF1PF2(1+cosθ)=20
→cosθ=(8/PF1PF2)-1<0
→8<PF1PF2③
设P(n,m),根据椭圆第二定义因为:PF1=(n-5/3)*√5/3,PF2=(n+5/3)*√5/3
带入③求得即可
一开始我想用面积公式的
就是S=b²tan(θ/2)
只是确定不了tanθ的取值
设∠F1PF2=θ
PF1²+PF2²-2PF1PF2*COSθ=(2c)²=20①
PF1+PF2=2a→PF1²+PF2²=(2a)²-2PF1PF2②
①②→36-2PF1PF2(1+cosθ)=20
→cosθ=(8/PF1PF2)-1<0
→8<PF1PF2③
设P(n,m),根据椭圆第二定义因为:PF1=(n-5/3)*√5/3,PF2=(n+5/3)*√5/3
带入③求得即可
一开始我想用面积公式的
就是S=b²tan(θ/2)
只是确定不了tanθ的取值
参考资料: 如果您的回答是从其他地方引用,请表明出处
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
以两焦点为直径画圆,与椭圆交对称四点,横坐标区间就知道了。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |