数学分析这道题具体怎么写
1个回答
展开全部
题目中最后一项应该是dxdy 被平面∑1:z=0,x2+y2≤1,下侧,则∑+∑1为封闭曲面用高斯高公式 ∫∫(∑+∑1) 2x^3dydz+2y^3dzdx+3(z^2-1)dxdy =∫∫∫ (6x2+6y2+6z2) dxdydz 球坐标 =6∫∫∫ r^4sinφ drdφdθ =6∫[0→2π]dθ∫[0→π/2]sinφdφ∫[0→1] r^4 dr =12π(1/5) =12π/5 下面减去∑1的积分: ∫∫∑1 2x^3dydz+2y^3dzdx+3(z^2-1)dxdy =∫∫ 3 dxdy D:x2+y2≤1 =3π 最终结果为:12π/5 - 3π = -3π/5
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询