2个回答
展开全部
I = ∫e^(-ax)cosbxdx = (-1/a)∫cosbxde^(-ax)
= (-1/a)e^(-ax)cosbx - (b/a)∫e^(-ax)sinbxdx
= (-1/a)e^(-ax)cosbx + (b/a^2)∫sinbxde^(-ax)
= (-1/a)e^(-ax)cosbx + (b/a^2)e^(-ax)sinbx - (b^2/a^2)∫e^(-ax)cosbxdx
(a^2)I = -ae^(-ax)cosbx + be^(-ax)sinbx - (b^2)I
I = e^(-ax)(bsinbx-acosbx)/(a^2+b^2)
代入上下限,[e^(-ax)(bsinbx-acosbx)/(a^2+b^2)]<0, +∞>
= (0+a)/(a^2+b^2) = a/(a^2+b^2)
= (-1/a)e^(-ax)cosbx - (b/a)∫e^(-ax)sinbxdx
= (-1/a)e^(-ax)cosbx + (b/a^2)∫sinbxde^(-ax)
= (-1/a)e^(-ax)cosbx + (b/a^2)e^(-ax)sinbx - (b^2/a^2)∫e^(-ax)cosbxdx
(a^2)I = -ae^(-ax)cosbx + be^(-ax)sinbx - (b^2)I
I = e^(-ax)(bsinbx-acosbx)/(a^2+b^2)
代入上下限,[e^(-ax)(bsinbx-acosbx)/(a^2+b^2)]<0, +∞>
= (0+a)/(a^2+b^2) = a/(a^2+b^2)
本回答被提问者和网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |