1个回答
展开全部
X'=A(t)X1(t)+F(t),c1X'=A(t)c1X1(t)+c1F(t)
X'=A(t)X2(t)+F(t),c2X'=A(t)c2X1(t)+c2F(t)
......
X'=A(t)X(n+1)(t)+F(t),c(n+1)X'=A(t)c(n+1)X(n+1)(t)+c(n+1)F(t)
各式相加:
(c1+c2+....+c(n+1))X'=A(t)[c1X1+c2X2+...+c(n+1)X(n+1)]+(c1+c2+....+c(n+1))F(t)
X'=A(t)[c1X1+c2X2+...+c(n+1)X(n+1)]+F(t)
X=c1X1+c2X2+...+c(n+1)X(n+1)是解;
其次,如果有某个解X(n+2)不能表达为c1X1+c2X2+...+c(n+1)X(n+1),则,方程组有n+2个线性无关解,矛盾。
X'=A(t)X2(t)+F(t),c2X'=A(t)c2X1(t)+c2F(t)
......
X'=A(t)X(n+1)(t)+F(t),c(n+1)X'=A(t)c(n+1)X(n+1)(t)+c(n+1)F(t)
各式相加:
(c1+c2+....+c(n+1))X'=A(t)[c1X1+c2X2+...+c(n+1)X(n+1)]+(c1+c2+....+c(n+1))F(t)
X'=A(t)[c1X1+c2X2+...+c(n+1)X(n+1)]+F(t)
X=c1X1+c2X2+...+c(n+1)X(n+1)是解;
其次,如果有某个解X(n+2)不能表达为c1X1+c2X2+...+c(n+1)X(n+1),则,方程组有n+2个线性无关解,矛盾。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询