a1,a2,…an是一组n维向量,怎样证明它们线性无关的充分必要条件是任一n维?
2个回答
展开全部
证明:充分性:若任一n维向量a都可以n维向量组a1,a2,…,an线性表示,
那么,特别地,n维单位坐标向量组也都可以由它们线性表示,
又向量组a1,a2,…,an也可由n维单位坐标向量线性表示,
所以,向量组a1,a2,…,an与n维单位坐标向量组等价,
而n维单位坐标向量组是线性无关组,
从而向量组a1,a2,…,an也是线性无关组.
必要性 若n维向量组a1,a2,…,an线性无关,又任意n+1个n维向量必线性相关,
设a是任一n维向量,则向量组a,a1,a2,…,an线性相关,
故a可以由a1,a2,…,an线性表示.
1、因为任意n+1个n维向量一定线性相关,设a是任意一个n维向量,则向量组a,a1.a2…an必线性相关,又n维向量组a1.a2…an线性无关,a都可由他们线性表示。
充分性。
2、若任一n维向量a都可由a1.a2…an线性表示,那么,特别的,n维单位坐标向量组也由他们线性表示。而a1.a2…an必可由n维单位坐标向量组线性表示,故a1.a2…an与n维单位坐标向量组等价,而n维单位坐标向量组线性无关,所以1.a2…an线性无关。
展开全部
证明 必要性
设a为任一n维向量
因为a1 a2 …… an线性无关
而a1 a2 …… an a是n+1个n维向量
是线性相关的
所以a能由a1 a2 …… an线性表示
且表示式是唯一的
充分性 已知任一n维向量都可由a1 a2 …… an线性表示,
故单位坐标向量组e1 e2 …… en能由a1 a2 …… an线性表示,
于是有n=R(e1 e2 …… en)≤R(a1 a2 …… an)≤n
即R(a1 a2 …… an)=n
所以a1 a2 …… an线性无关
设a为任一n维向量
因为a1 a2 …… an线性无关
而a1 a2 …… an a是n+1个n维向量
是线性相关的
所以a能由a1 a2 …… an线性表示
且表示式是唯一的
充分性 已知任一n维向量都可由a1 a2 …… an线性表示,
故单位坐标向量组e1 e2 …… en能由a1 a2 …… an线性表示,
于是有n=R(e1 e2 …… en)≤R(a1 a2 …… an)≤n
即R(a1 a2 …… an)=n
所以a1 a2 …… an线性无关
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询