高一数学题求解答
1个回答
展开全部
A={y|y2-(a ²+a+1)y+a(a ²+1)>0}={y|(y-a)[y-(a ²+1)]>0}
B={y|y2-6y+8≤0}={y|(y-2)(y-4)≤0}={y|2≤y≤4}
首先要判断a和(a ²+1)的大小关系。
∵(a ²+1)-a=(a-1/2)²+3/4>0
∴a ²+1>a
∴A={y|(y-a)[y-(a ²+1)]>0}={y|y<a或y>a ²+1}
当A∩B≠φ时,a>2或a ²+1<4
所以解得a的取值范围为{a|a>2或-√3<a<√3}
B={y|y2-6y+8≤0}={y|(y-2)(y-4)≤0}={y|2≤y≤4}
首先要判断a和(a ²+1)的大小关系。
∵(a ²+1)-a=(a-1/2)²+3/4>0
∴a ²+1>a
∴A={y|(y-a)[y-(a ²+1)]>0}={y|y<a或y>a ²+1}
当A∩B≠φ时,a>2或a ²+1<4
所以解得a的取值范围为{a|a>2或-√3<a<√3}
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询