初中数学5个基本尺规作图方法
1、通过两个已知点可作一直线。
2、已知圆心和半径可作一个圆。
3、若两已知直线相交,可求其交点。
4、若已知直线和一已知圆相交,可求其交点。
5、若两已知圆相交,可求其交点。
尺规作图是指用无刻度的直尺和圆规作图。尺规作图是起源于古希腊的数学课题。只使用圆规和直尺,并且只准许使用有限次,来解决不同的平面几何作图题。
扩展资料
作图实例
1、已知:不共线的A、B、C三点。
2、求作:过该三点之圆。
3、作法:
(1) 连接AB,连接AC;
(2)分别作出线段AB、AC的中点D、E;
(3)过D作AB的垂线,过E作AC的垂线,两垂线相交于O;
(4)以O为圆心OA长为半径作圆,即为求作之圆。
参考资料来源:百度百科——尺规作图
五种基本作图方法演示:
尺规作图的基本步骤和作图语言:
一、作线段等于已知线段
已知:线段a
求作:线段AB,使AB=a
作法:
1、作射线AC
2、在射线AC上截取AB=a ,则线段AB就是所要求作的线段
二、作角等于已知角
已知:∠AOB
求作:∠A′O′B′,使∠A′O′B′=∠AOB.
作法:
(1)作射线O′A′.
(2)以点O为圆心,以任意长为半径画弧,交OA于点C,交OB于点D.
(3)以点O′为圆心,以OC长为半径画弧,交O′A′于点C′.
(4)以点C′为圆心,以CD长为半径画弧,交前面的弧于点D′.
(5)过点D′作射线O′B′.∠A′O′B′就是所求作的角.
三、作角的平分线
已知:∠AOB,
求作:∠AOB内部射线OC,使:∠AOC=∠BOC,
作法:(1)在OA和OB上,分别截取OD、OE,使OD=OE.
(2)分别以D、E为圆心,大于的长为半径作弧,在∠AOB内,两弧交于点C.
(3)作射线OC.OC就是所求作的射线。
四、作线段的垂直平分线(中垂线)或中点
已知:线段AB
求作:线段AB的垂直平分线
作法:
(1)分别以A、B为圆心,以大于AB的一半为半径在AB两侧画弧,分别相交于E、F两点
(2)经过E、F,作直线EF(作直线EF交AB于点O)直线EF就是所求作的垂直平分线(点O就是所求作的中点)
五、过直线外一点作直线的垂线。
(1)已知点在直线外
已知:直线a、及直线a外一点A.(画出直线a、点A)
求作:直线a的垂线直线b,使得直线b经过点A.
作法:
(1)以点A为圆心,以适当长为半径画弧,交直线a于点C、D.
(2)以点C为圆心,以AD长为半径在直线另一侧画弧.
(3)以点D为圆心,以AD长为半径在直线另一侧画弧,交前一条弧于点B.
(4)经过点A、B作直线AB.直线AB就是所画的垂线b.
(2)已知点在直线上
已知:直线a、及直线a上一点A.
求作:直线a的垂线直线b,使得直线b经过点A.
作法:(1)以A为圆心,任一线段的长为半径画弧,交a于C、B两点
(2)点C为圆心,以大于CB一半的长为半径画弧;
(3)以点B为圆心,以同样的长为半径画弧,两弧的交点分别记为M、N
(4)经过M、N,作直线MN直线MN就是所求作的垂线b