3个回答
展开全部
(1)
a1=1/2
2S(n+1) = 4Sn +1
S(n+1) = 2Sn +1/2
S(n+1) + 1/2 = 2[ Sn + 1/2 ]
=> { Sn +1/2 } 是等比数列,q=2
Sn + 1/2 = 2^(n-1) . (S1 + 1/2 )
=2^(n-1)
Sn = -1/2 + 2^(n-1)
an = Sn -S(n-1)
= 2^(n-2)
(2)
bn=log<1/2>[ an. a(n+1) ]
=log<1/2> 2^(2n-3)
= 3-2n
Tn = b1+b2+...+bn
= (4-2n)n/2
=2n -n^2
a1=1/2
2S(n+1) = 4Sn +1
S(n+1) = 2Sn +1/2
S(n+1) + 1/2 = 2[ Sn + 1/2 ]
=> { Sn +1/2 } 是等比数列,q=2
Sn + 1/2 = 2^(n-1) . (S1 + 1/2 )
=2^(n-1)
Sn = -1/2 + 2^(n-1)
an = Sn -S(n-1)
= 2^(n-2)
(2)
bn=log<1/2>[ an. a(n+1) ]
=log<1/2> 2^(2n-3)
= 3-2n
Tn = b1+b2+...+bn
= (4-2n)n/2
=2n -n^2
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询