求不定积分lnx/x^2 dx 30
7个回答
展开全部
分部积分法;
∫lnx/x^2 dx=-lnx/x-∫1/x d(lnx)=-lnx/x-∫1/x^2 dx
=-lnx/x+1/x+c
∫lnx/x^2 dx=-lnx/x-∫1/x d(lnx)=-lnx/x-∫1/x^2 dx
=-lnx/x+1/x+c
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
∫(lnx)^2 dx
=x(lnx)^2-∫xd(lnx)^2
=x(lnx)^2-∫x*2lnx*1/xdx
=x(lnx)^2-2∫lnxdx
=x(lnx)^2-2[xlnx-∫xdlnx]
=x(lnx)^2-2xlnx+2∫x*1/xdx
=x(lnx)^2-2xlnx+2x+C
=x(lnx)^2-∫xd(lnx)^2
=x(lnx)^2-∫x*2lnx*1/xdx
=x(lnx)^2-2∫lnxdx
=x(lnx)^2-2[xlnx-∫xdlnx]
=x(lnx)^2-2xlnx+2∫x*1/xdx
=x(lnx)^2-2xlnx+2x+C
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |