方法就是将隐函数方程的两边同时对x求导,在求导的过程中,将y看成x的函数,然后利用复合函数的求导法则,得到dy/dx的方程,解这个方程,就得到了 dy/dx的表达式。
隐函数是由隐式方程所隐含定义的函数。设F(x,y)是某个定义域上的函数。如果存在定义域上的子集D,使得对每个x属于D,存在相应的y满足F(x,y)=0,则称方程确定了一个隐函数。记为y=y(x)。 [2] 显函数是用y=f(x)来表示的函数,显函数是相对于隐函数来说的。
求导法则
对于一个已经确定存在且可导的情况下,我们可以用复合函数求导的链式法则来进行求导。在方程左右两边都对x进行求导,由于y其实是x的一个函数,所以可以直接得到带有 y' 的一个方程,然后化简得到 y' 的表达式。
隐函数导数的求解一般可以采用以下方法:
方法①:先把隐函数转化成显函数,再利用显函数求导的方法求导。
方法②:隐函数左右两边对x求导(但要注意把y看作x的函数)。
方法③:利用一阶微分形式不变的性质分别对x和y求导,再通过移项求得的值。
方法④:把n元隐函数看作(n+1)元函数,通过多元函数的偏导数的商求得n元隐函数的导数。
举个例子,若欲求z = f(x,y)的导数,那么可以将原隐函数通过移项化为f(x,y,z) = 0的形式,然后通过(式中F'y,F'x分别表示y和x对z的偏导数)来求解。
求隐函数的二阶偏导分两布:
(1)在方程两边先对X求一阶偏导得出Z关于X的一阶偏导,然后再解出Z关于X的一阶偏导。
(2)在在原来求过一阶偏导的方程两边对X再求一次偏导。此方程当中一定既含有X的一阶偏导,也含有二阶偏导。最后把(1)中解得的一阶偏导代入其中,就能得出只含有二阶偏导的方程,解出即可。
扩展资料
隐函数导数的求解一般可以采用以下方法:
方法1:先把隐函数转化成显函数,再利用显函数求导的方法求导;
方法2:隐函数左右两边对x求导(但要注意把y看作x的函数);
方法3:利用一阶微分形式不变的性质分别对x和y求导,再通过移项求得的值;
方法4:把n元隐函数看作(n+1)元函数,通过多元函数的偏导数的商求得n元隐函数的导数。
举个例子,若欲求z = f(x,y)的导数,那么可以将原隐函数通过移项化为f(x,y,z) = 0的形式,然后通过(式中F'y,F'x分别表示y和x对z的偏导数)来求解。