高一三角函数题目第二问
2个回答
展开全部
由已知:f(x)=sin(2x + π/6)
则f(α)=sin(2α + π/6)
∵sin(2α + π/6)=sin[2α + (π/2 - π/3)]
=sin(π/2 + 2α - π/3)=sin[π/2 + (2α - π/3)]
=cos(2α - π/3)=cos[2(α - π/6)]
∴f(α)=cos[2(α - π/6)]
=1 - 2sin²(α - π/6)]
=1 - 2•(-1/3)²
=1 - 2•(1/9)
=7/9
则f(α)=sin(2α + π/6)
∵sin(2α + π/6)=sin[2α + (π/2 - π/3)]
=sin(π/2 + 2α - π/3)=sin[π/2 + (2α - π/3)]
=cos(2α - π/3)=cos[2(α - π/6)]
∴f(α)=cos[2(α - π/6)]
=1 - 2sin²(α - π/6)]
=1 - 2•(-1/3)²
=1 - 2•(1/9)
=7/9
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询