在△ABC中,AB=AC,点D是直线BC上一点(不与BC重合)..........

在△ABC中,AB=AC,点D是直线BC上一点(不与BC重合),以AD为一边在AD的右侧作三角形ADE,使AD=AE,∠DAE=∠BAC,连接CE.(1)当点D在线段BC... 在△ABC中,AB=AC,点D是直线BC上一点(不与BC重合),以AD为一边在AD的右侧作三角形ADE,使AD=AE,∠DAE=∠BAC,连接CE.
(1)当点D在线段BC上,如果∠BAC=90°,则∠BCE=?
(2)设∠BAC=a,∠BCE=β
当点D在线段BC上移动,则a,β有什么样的关系?理由?
当点D在BC上移动,则a,β有怎样的数量关系?不需理由
展开
馨羽yu
2013-01-13 · TA获得超过186个赞
知道答主
回答量:33
采纳率:0%
帮助的人:7.4万
展开全部
解:(1)90°.
理由:∵∠BAC=∠DAE,
∴∠BAC-∠DAC=∠DAE-∠DAC.
即∠BAD=∠CAE.
在△ABD与△ACE中,
AB=AC∠BAD=∠CAEAD=AE
∴△ABD≌△ACE,
∴∠B=∠ACE.
∴∠B+∠ACB=∠ACE+∠ACB,
∴∠BCE=∠B+∠ACB,
又∵∠BAC=90°
∴∠BCE=90°;

(2)①α+β=180°,
理由:∵∠BAC=∠DAE,
∴∠BAC-∠DAC=∠DAE-∠DAC.
即∠BAD=∠CAE.
在△ABD与△ACE中,
AB=AC∠BAD=∠CAEAD=AE
∴△ABD≌△ACE,
∴∠B=∠ACE.
∴∠B+∠ACB=∠ACE+∠ACB.
∴∠B+∠ACB=β,
∵α+∠B+∠ACB=180°,
∴α+β=180°;

②当点D在射线BC上时,α+β=180°;
理由:∵∠BAC=∠DAE,
∴∠BAD=∠CAE,
∵AB=AC,AD=AE,
∴△ABD≌△ACE(SAS),
∴∠B=∠ACE,
∵∠BAC+∠B+∠BCA=180°,
∴∠BAC+∠BCE=∠BAC+∠BCA+∠ACE=∠BAC+∠BCA+∠B=180°,
∴α+β=180°;
当点D在射线BC的反向延长线上时,α=β.
理由:∵∠DAE=∠BAC,
∴∠DAB=∠EAC,
∵AD=AE,AB=AC,
∴△ADB≌△AEC(SAS),
∴∠ABD=∠ACE,
∵∠ABD=∠BAC+∠ACB,∠ACE=∠BCE+∠ACB,
∴∠BAC=∠BCE,
即α=β.
happy婧Jing
推荐于2016-12-01
知道答主
回答量:7
采纳率:0%
帮助的人:9.5万
展开全部
解(1)∠BCE=90°
首先在等腰直角三角形ABC中,∠B=∠ACB=45°,又因为∠BAC=∠DAE=90°,所以∠BAD=∠CAE,又AE=AD,AB=AC,所以△ABD相似于△ACE,所以∠B=∠ACE=45°,所以∠BCE=90°
(2)β=180-a
来自:求助得到的回答
本回答被提问者和网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式