求微分方程的通解
4个回答
富港检测技术(东莞)有限公司_
2024-04-02 广告
2024-04-02 广告
正弦振动多用于找出产品设计或包装设计的脆弱点。看在哪一个具体频率点响应最大(共振点);正弦振动在任一瞬间只包含一种频率的振动,而随机振动在任一瞬间包含频谱范围内的各种频率的振动。由于随机振动包含频谱内所有的频率,所以样品上的共振点会同时激发...
点击进入详情页
本回答由富港检测技术(东莞)有限公司_提供
展开全部
求方程xy'+y=y(lnx+lny)的通解
解:xy'+y=yln(xy);令xy=u,则y=u/x........(1),y'=dy/dx=[x(du/dx)-u]/x²,代入原式得:
[x(du/dx)-u]/x+u/x=(u/x)lnu,化简得du/dx=(u/x)lnu,
分离变量得du/(ulnu)=(1/x)dx;
积分之得∫du/(ulnu)=∫(1/x)dx
即有lnlnu=lnx+lnC=lnCx
故得lnu=Cx,即u=e^(Cx)
代入(1)式即得通解为y=(1/x)e^(Cx)
【检验:对通解的两边取对数:lny=Cx-lnx;取导数:y'/y=C-1/x;故y'=Cy-(y/x);
代入原式:左边=Cxy-y+y=Cxy;右边=y(lnx+Cx-lnx)=Cxy;故左边=右边,答案正确。】
解:xy'+y=yln(xy);令xy=u,则y=u/x........(1),y'=dy/dx=[x(du/dx)-u]/x²,代入原式得:
[x(du/dx)-u]/x+u/x=(u/x)lnu,化简得du/dx=(u/x)lnu,
分离变量得du/(ulnu)=(1/x)dx;
积分之得∫du/(ulnu)=∫(1/x)dx
即有lnlnu=lnx+lnC=lnCx
故得lnu=Cx,即u=e^(Cx)
代入(1)式即得通解为y=(1/x)e^(Cx)
【检验:对通解的两边取对数:lny=Cx-lnx;取导数:y'/y=C-1/x;故y'=Cy-(y/x);
代入原式:左边=Cxy-y+y=Cxy;右边=y(lnx+Cx-lnx)=Cxy;故左边=右边,答案正确。】
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |