如图,在三角形ABC中,∠bac=∠b=60°
展开全部
(1)∠DFC的度数不发生变化
恒为60°
证明如下:
∵∠BAC=∠B=60°
∴等边三角形ABC
∴AB=AC
∵AE=BD
∴△ABD≌△
CAE(SAS)
∴∠AEC=∠ADB
∵∠ADB+∠BAD=180°-60°=120°
∴∠AEC+∠BAD=120°
∴∠DFC=∠AFE=180°-(∠AEC+∠BAD)=60°
(2)不发生改变
证明如下:
∵BD=AE,
AB=AC,
∠ABD=∠EAC=120°
∴△ABD≌△
CAE(SAS)
∴∠E=∠D
∵∠EAF=∠DAB
∴∠E+∠EAF=180°-120°=60°
∴∠DFC=60°
恒为60°
证明如下:
∵∠BAC=∠B=60°
∴等边三角形ABC
∴AB=AC
∵AE=BD
∴△ABD≌△
CAE(SAS)
∴∠AEC=∠ADB
∵∠ADB+∠BAD=180°-60°=120°
∴∠AEC+∠BAD=120°
∴∠DFC=∠AFE=180°-(∠AEC+∠BAD)=60°
(2)不发生改变
证明如下:
∵BD=AE,
AB=AC,
∠ABD=∠EAC=120°
∴△ABD≌△
CAE(SAS)
∴∠E=∠D
∵∠EAF=∠DAB
∴∠E+∠EAF=180°-120°=60°
∴∠DFC=60°
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询