带有三角函数的极限怎么求
2个回答
展开全部
1)首先应该有基本的知识库:
三角函数
两角和公式
sin(a+b)=sinacosb+cosasinbsin(a-b)=sinacosb-sinbcosa
cos(a+b)=cosacosb-sinasinbcos(a-b)=cosacosb+sinasinb
tan(a+b)=(tana+tanb)/(1-tanatanb)tan(a-b)=(tana-tanb)/(1+tanatanb)
ctg(a+b)=(ctgactgb-1)/(ctgb+ctga)ctg(a-b)=(ctgactgb+1)/(ctgb-ctga)
倍角公式
tan2a=2tana/(1-tan2a)ctg2a=(ctg2a-1)/2ctga
cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a
sinα+sin(α+2π/n)+sin(α+2π*2/n)+sin(α+2π*3/n)+……+sin[α+2π*(n-1)/n]=0
cosα+cos(α+2π/n)+cos(α+2π*2/n)+cos(α+2π*3/n)+……+cos[α+2π*(n-1)/n]=0以及
sin^2(α)+sin^2(α-2π/3)+sin^2(α+2π/3)=3/2
tanatanbtan(a+b)+tana+tanb-tan(a+b)=0
·万能公式:
sinα=2tan(α/2)/[1+tan^2(α/2)]
cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)]
tanα=2tan(α/2)/[1-tan^2(α/2)]
半角公式
sin(a/2)=√((1-cosa)/2)sin(a/2)=-√((1-cosa)/2)
cos(a/2)=√((1+cosa)/2)cos(a/2)=-√((1+cosa)/2)
tan(a/2)=√((1-cosa)/((1+cosa))tan(a/2)=-√((1-cosa)/((1+cosa))
ctg(a/2)=√((1+cosa)/((1-cosa))ctg(a/2)=-√((1+cosa)/((1-cosa))
和差化积
2sinacosb=sin(a+b)+sin(a-b)2cosasinb=sin(a+b)-sin(a-b)
2cosacosb=cos(a+b)-sin(a-b)-2sinasinb=cos(a+b)-cos(a-b)
sina+sinb=2sin((a+b)/2)cos((a-b)/2cosa+cosb=2cos((a+b)/2)sin((a-b)/2)
tana+tanb=sin(a+b)/cosacosbtana-tanb=sin(a-b)/cosacosb
ctga+ctgbsin(a+b)/sinasinb-ctga+ctgbsin(a+b)/sinasinb
正弦定理a/sina=b/sinb=c/sinc=2r
余弦定理b^2=a^2+c^2-2accosb
2)极限就是建立在这些变换的基础上的了
常见的有:
<1>等价无穷小代换
<2>洛必达法则
最后告诉你一个万能无敌的方法:用泰勒展开替换式中出现的三角函数,这个方法注意的是保持适当的阶!
<>》以上只是一家之言,具体的问题,可以具体交流
三角函数
两角和公式
sin(a+b)=sinacosb+cosasinbsin(a-b)=sinacosb-sinbcosa
cos(a+b)=cosacosb-sinasinbcos(a-b)=cosacosb+sinasinb
tan(a+b)=(tana+tanb)/(1-tanatanb)tan(a-b)=(tana-tanb)/(1+tanatanb)
ctg(a+b)=(ctgactgb-1)/(ctgb+ctga)ctg(a-b)=(ctgactgb+1)/(ctgb-ctga)
倍角公式
tan2a=2tana/(1-tan2a)ctg2a=(ctg2a-1)/2ctga
cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a
sinα+sin(α+2π/n)+sin(α+2π*2/n)+sin(α+2π*3/n)+……+sin[α+2π*(n-1)/n]=0
cosα+cos(α+2π/n)+cos(α+2π*2/n)+cos(α+2π*3/n)+……+cos[α+2π*(n-1)/n]=0以及
sin^2(α)+sin^2(α-2π/3)+sin^2(α+2π/3)=3/2
tanatanbtan(a+b)+tana+tanb-tan(a+b)=0
·万能公式:
sinα=2tan(α/2)/[1+tan^2(α/2)]
cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)]
tanα=2tan(α/2)/[1-tan^2(α/2)]
半角公式
sin(a/2)=√((1-cosa)/2)sin(a/2)=-√((1-cosa)/2)
cos(a/2)=√((1+cosa)/2)cos(a/2)=-√((1+cosa)/2)
tan(a/2)=√((1-cosa)/((1+cosa))tan(a/2)=-√((1-cosa)/((1+cosa))
ctg(a/2)=√((1+cosa)/((1-cosa))ctg(a/2)=-√((1+cosa)/((1-cosa))
和差化积
2sinacosb=sin(a+b)+sin(a-b)2cosasinb=sin(a+b)-sin(a-b)
2cosacosb=cos(a+b)-sin(a-b)-2sinasinb=cos(a+b)-cos(a-b)
sina+sinb=2sin((a+b)/2)cos((a-b)/2cosa+cosb=2cos((a+b)/2)sin((a-b)/2)
tana+tanb=sin(a+b)/cosacosbtana-tanb=sin(a-b)/cosacosb
ctga+ctgbsin(a+b)/sinasinb-ctga+ctgbsin(a+b)/sinasinb
正弦定理a/sina=b/sinb=c/sinc=2r
余弦定理b^2=a^2+c^2-2accosb
2)极限就是建立在这些变换的基础上的了
常见的有:
<1>等价无穷小代换
<2>洛必达法则
最后告诉你一个万能无敌的方法:用泰勒展开替换式中出现的三角函数,这个方法注意的是保持适当的阶!
<>》以上只是一家之言,具体的问题,可以具体交流
北京埃德思远电气技术咨询有限公司
2021-11-22 广告
2021-11-22 广告
假设条件在短路的实际计算中, 为了能在准确范围内迅速地计算短路电流, 通常采取以下简化假设。(1)不考虑发电机的摇摆现象。(2)不考虑磁路饱和,认为短路回路各元件的电抗为常数。(3)不考虑线路对地电容, 变压器的磁支路和高压电网中的电阻, ...
点击进入详情页
本回答由北京埃德思远电气技术咨询有限公司提供
展开全部
总的来说,要搞清楚,大数与有限数,有需要可以使用夹逼定理、罗必塔法则等。
如求解例如lim x趋向于0情况下(sin 1/x)/(1/x),1/x趋向于∞,sin 1/x∈[1,1],
所以lim x趋向于0,(sin 1/x)/(1/x)=0;
如求解例如lim x趋向于∞情况下(sin 1/x)/(1/x),1/x趋向于0,sin 1/x趋向于0,
此时由于lim x趋向于0,(sin x)/x=1,
所以lim x趋向于∞,(sin 1/x)/(1/x)=1;
对于0/0,∞/∞,∞±∞等等情况往往需要可以使用夹逼定理、罗必塔法则等。
如求解例如lim x趋向于0情况下(sin 1/x)/(1/x),1/x趋向于∞,sin 1/x∈[1,1],
所以lim x趋向于0,(sin 1/x)/(1/x)=0;
如求解例如lim x趋向于∞情况下(sin 1/x)/(1/x),1/x趋向于0,sin 1/x趋向于0,
此时由于lim x趋向于0,(sin x)/x=1,
所以lim x趋向于∞,(sin 1/x)/(1/x)=1;
对于0/0,∞/∞,∞±∞等等情况往往需要可以使用夹逼定理、罗必塔法则等。
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询