数学微积分问题?

请问这道题(如图),如何用替换法x=coshu来解啊... 请问这道题(如图),如何用替换法x=coshu来解啊 展开
 我来答
sjh5551
高粉答主

2021-10-23 · 醉心答题,欢迎关注
知道大有可为答主
回答量:3.8万
采纳率:63%
帮助的人:8113万
展开全部

用代换 x = coshu 解之:

tllau38
高粉答主

2021-10-23 · 关注我不会让你失望
知道顶级答主
回答量:8.7万
采纳率:73%
帮助的人:2亿
展开全部
let
x=secu
dx=secu.tanu du
∫x^5/√(x^2-1) dx
=∫ [(secu)^5/tanu] .[secu.tanu du]
=∫ (secu)^6 du
=(1/5)(secu)^4.tanu + (4/15)(secu)^2.tanu + (4/15)tanu + (4/15)u + C
=(1/5)x^4.√(x^2-1) + (4/15)x^2.√(x^2-1) + (4/15)√(x^2-1) + (4/15)arcsecx + C
//
I(2n)
=∫ (secu)^(2n) du
=∫ (secu)^(2n-2) dtanu
=(secu)^(2n-2) .tanu -(2n-2)∫ (secu)^(2n-2).(tanu)^2 du
=(secu)^(2n-2) .tanu -(2n-2)∫ (secu)^(2n-2).[(secu)^2 -1] du
(2n-1)I(2n)
=(secu)^(2n-2) .tanu +(2n-2)∫ (secu)^(2n-2) du
=(secu)^(2n-2) .tanu +(2n-2)I(2n-2)
I(2n) =[1/(2n-1)] +[(2n-2)/(2n-1)] I(2n-2)
ie
I6
=(1/5)(secu)^4.tanu + (4/5)I4
=(1/5)(secu)^4.tanu + (4/5)[ (1/3)(secu)^2.tanu + (2/3)I2]
=(1/5)(secu)^4.tanu + (4/15)(secu)^2.tanu + (8/15)I2
=(1/5)(secu)^4.tanu + (4/15)(secu)^2.tanu + (8/15)[ (1/2)tanu + (1/2)I0]
=(1/5)(secu)^4.tanu + (4/15)(secu)^2.tanu + (4/15)tanu + (4/15)I0
=(1/5)(secu)^4.tanu + (4/15)(secu)^2.tanu + (4/15)tanu + (4/15)u + C
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式