展开全部
g(x) = alnx/(x+1)
g'(x)
=a[(x+1)(lnx)' - (lnx)(x+1)']/(x+1)^2
=a[(x+1)/x - lnx]/(x+1)^2
=a(x+1 - xlnx)/[x(x+1)^2]
h(x)= b/x
h'(x) =-b/x^2
f(x) = alnx/(x+1) +b/x
f'(x) =a(x+1 - xlnx)/[x(x+1)^2] -b/x^2
g'(x)
=a[(x+1)(lnx)' - (lnx)(x+1)']/(x+1)^2
=a[(x+1)/x - lnx]/(x+1)^2
=a(x+1 - xlnx)/[x(x+1)^2]
h(x)= b/x
h'(x) =-b/x^2
f(x) = alnx/(x+1) +b/x
f'(x) =a(x+1 - xlnx)/[x(x+1)^2] -b/x^2
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |